Alzheimer’s Disease Detection using 3D ResNet-18 on MRI

版本 1.0.1 (113.5 MB) 作者: Amir Ebrahimi
This model detects Alzheimer’s Disease using the ResNet-18 model on MRI. We proposed a method to utilise transfer learning in 3D CNNs.
726.0 次下载
更新时间 2021/5/6

查看许可证

This model detects Alzheimer’s Disease (AD) using the ResNet-18 model on Magnetic Resonance Imaging (MRI). In this model, we propose a method to utilise transfer learning in 3D CNNs, which allows the transfer of knowledge from 2D image datasets (ImageNet) to a 3D image dataset. To build 3D ResNet-18, 2D filters of 2D ResNet-18 were extended in the third dimension to have 3D filters. The remaining layers were adjusted according to the new filters. Then, the entire MRIs were used for training 3D ResNet-18 to make one decision per person.

Our results show that introducing transfer learning to a 3D CNN improves an AD detection system's accuracy. This approach achieved 96.88% accuracy, 100% sensitivity, and 93.75% specificity on our ADNI dataset.

There are currently some sample images in this folder. To have access to more images, you need to send your application to ADNI (http://adni.loni.usc.edu/data-samples/access-data/).

Before applying your MRI data, you should register MRI scans to the MNI space using the SPM12 toolbox.

引用格式

Ebrahimi, Amir, et al. “Introducing Transfer Learning to 3D ResNet-18 for Alzheimer’s Disease Detection on MRI Images.” 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), IEEE, 2020, doi:10.1109/ivcnz51579.2020.9290616.

查看更多格式

Ebrahimi, Amir, et al. “Convolutional Neural Networks for Alzheimer’s Disease Detection on MRI Images.” Journal of Medical Imaging, vol. 8, no. 02, SPIE-Intl Soc Optical Eng, Apr. 2021, doi:10.1117/1.jmi.8.2.024503.

查看更多格式
MATLAB 版本兼容性
创建方式 R2020b
与 R2019b 及更高版本兼容
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.1

The relevant paper is published.

1.0.0