CPSOGSA for Multilevel Image Thresholding

版本 1.1 (100.6 KB) 作者: Sajad Ahmad Rather
CPSOGSA is employed to find the optimal pixels in the benchmark images
336.0 次下载
更新时间 2021/7/7
This work introduces a new image segmentation method based on the constriction coefficient-based particle swarm optimization and gravitational search algorithm (CPSOGSA). The random samples of the image act as searcher agents of the CPSOGSA algorithm. The optimal number of thresholds is determined using Kapur's entropy method. The effectiveness and applicability of CPSOGSA in image segmentation is accomplished by applying it to five standard images from the USC-SIPI image database, namely Aeroplane, Cameraman, Clock, Lena, and Pirate.
This is the source code of the paper:
Rather, S. A., & Bala, P. S. (2021), “Constriction Coefficient Based Particle Swarm Optimization and Gravitational Search Algorithm for Multilevel Image Thresholding”, Expert Systems, https://doi.org/10.1111/exsy.12717, Wiley, SCIE (I.F = 2.587).
If you have no access to the paper, please drop me an email at sajad.win8@gmail.com and I will obviously send you the paper. All of the source codes and extra information as well as more optimization techniques can be found in my Github page at https://github.com/SajadAHMAD1.
My other Social Media Link(s)/Accounts:
13) Gmail: sajad.win8@gmail.com

引用格式

Rather, Sajad Ahmad, and P. Shanthi Bala. “Constriction Coefficient Based Particle Swarm Optimization and Gravitational Search Algorithm for Multilevel Image Thresholding.” Expert Systems, Wiley, May 2021, doi:10.1111/exsy.12717.

查看更多格式
MATLAB 版本兼容性
创建方式 R2016a
兼容任何版本
平台兼容性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.1

See release notes for this release on GitHub: https://github.com/SajadAHMAD1/CPSOGSA-for-Multilevel-Image-Thresholding/releases/tag/1.1

要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库
要查看或报告此来自 GitHub 的附加功能中的问题,请访问其 GitHub 仓库