MathWorks - Mobile View
  • 碻形冰暨硞 MathWorks 帐憷碻形冰暨硞 MathWorks 帐憷
  • Access your MathWorks Account
    • 我的帐户
    • 我的社区资料
    • 关联许可证
    • 登出
  • 产品
  • 解决方案
  • 学术
  • 支持
  • 社区
  • 活动
  • 获取 MATLAB
MathWorks
  • 产品
  • 解决方案
  • 学术
  • 支持
  • 社区
  • 活动
  • 获取 MATLAB
  • 碻形冰暨硞 MathWorks 帐憷碻形冰暨硞 MathWorks 帐憷
  • Access your MathWorks Account
    • 我的帐户
    • 我的社区资料
    • 关联许可证
    • 登出

视频与网上研讨会

  • MathWorks
  • 视频
  • 视频首页
  • 搜索
  • 视频首页
  • 搜索
  • 联系销售
  • 试用软件
  Register to watch video
  • Description
  • Full Transcript
  • Related Resources

What Is Optimization Toolbox?

Gabriel Ha, MathWorks

Optimization Toolbox™ provides functions for finding parameters that minimize or maximize objectives while satisfying constraints. The toolbox includes solvers for linear programming (LP), mixed-integer linear programming (MILP), quadratic programming (QP), second-order cone programming (SOCP), nonlinear programming (NLP), constrained linear least squares, nonlinear least squares, and nonlinear equations.

You can define your optimization problem with functions and matrices, either programmatically or with an app. Alternatively, you can use expressions of optimization variables that reflect the underlying mathematics. You can use automatic differentiation of objective and constraint functions for faster and more accurate solutions.

Optimization Toolbox™ provides solvers for finding a maximum or a minimum of an objective function subject to constraints. This enables you to find optimal designs, minimize risk for financial applications, optimize decision making, and estimate parameters.

You can use the problem-based approach to define the optimization variables and their bounds, set the objective, and then solve.  On this problem, the solve function recognizes the problem is nonlinear, applies a nonlinear solver, and uses automatic differentiation for faster gradient evaluations.

Optimization problems often have sets of variables or constraints like in this production planning problem. You can define arrays of optimization variables and constraints, and index with numbers or strings, resulting in readable and compact representations of large problems.

You can use the problem-based approach even when some functions are not naturally expressed as optimization expressions. This problem’s objective function requires solving an ODE. We can convert this to an optimization expression and use it in the problem to be optimized.

You can add integer constraints to linear problems involving variables which must take on integer values. This includes when the variables represent a yes or no decision, like whether a process is assigned to a processor in this scheduling example.

In addition to solvers for nonlinear, linear, and mixed-integer linear programs, Optimization Toolbox includes specialized solvers for quadratic programs, second-order cone programs, multiobjective, and linear and nonlinear least squares.

You can quickly solve large and sparse problems with thousands of variables. Here, a quadratic problem with over 40,000 variables is solved in around thirty seconds.

 As an alternative to the problem-based approach, you can use Optimization Toolbox with the solver-based approach. After representing your objectives and constraints as MATLAB functions and matrices, the Optimize Live Task helps guide you through this approach by indicating where to select a solver and insert your predefined MATLAB constructs.  

Optimization Toolbox works in conjunction with other MATLAB® tools. You can accelerate numerical gradient calculations using Parallel Computing Toolbox™.

You can compile your applications into apps or libraries with MATLAB Compiler™ and MATLAB Compiler SDK™. 

You can generate portable and readable C/C++ code to solve your optimization problems using MATLAB Coder™. Use this code to deploy applications to enterprise and embedded systems.

For more information, return to the Optimization Toolbox page or choose a link below.

Related Products

  • Optimization Toolbox
  • Global Optimization Toolbox

Feedback

Featured Product

Optimization Toolbox

  • Request Trial
  • Get Pricing

Up Next:

10:46
Mathematical Modeling with Optimization, Part 2b:...

Related Videos:

6:08
Introduction to Optimization Graphical User Interface
1:03:00
Optimization in MATLAB for Financial Applications
53:45
Tips and Tricks: Getting Started Using Optimization with...
36:35
Optimization in MATLAB: An Introduction to Quadratic...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 联系销售
  • 试用软件

了解产品

  • MATLAB
  • Simulink
  • 学生版软件
  • 硬件支持
  • 文件交换

试用或购买

  • 下载
  • 试用软件
  • 联系销售
  • 定价和许可
  • 如何购买

如何使用

  • 文档
  • 教程
  • 示例
  • 视频与网上研讨会
  • 培训

获取支持

  • 安装帮助
  • MATLAB 问答社区
  • 咨询
  • 许可中心
  • 联系支持

关于 MathWorks

  • 招聘
  • 新闻室
  • 社会愿景
  • 联系销售
  • 关于 MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks 公司是世界领先的为工程师和科学家提供数学计算软件的开发商。

发现…

  • Select a Web Site United States
  • 专利
  • 商标
  • 隐私权政策
  • 防盗版
  • 应用状态

京ICP备12052471号

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Weibo
  • WeChat

    WeChat

  • LinkedIn
  • RSS

关注我们