Reinforcement Learning
This series provides an overview of reinforcement learning, a type of machine learning that has the potential to solve some control system problems that are too difficult to solve with traditional techniques.
We’ll cover the basics of the reinforcement problem and how it differs from traditional control techniques. We’ll show why neural networks are used to represent unknown functions and how the agent uses rewards from the environment to train them.
By the end of this series, you’ll be better prepared to answer questions like:
- What is reinforcement learning and why should I consider it when solving my control problem?
- How do I set up and solve the reinforcement learning problem?
- What are some of the benefits and drawbacks of reinforcement learning compared to a traditional controls approach?