Implement Aerial Lidar SLAM for UAVs Using MATLAB
Lidar SLAM is a subset of Simultaneous Localization and Mapping or SLAM algorithms, used to develop a map of an environment and localize the pose of a platform or autonomous vehicle in that map. Lidar SLAM algorithms allow the platform to map out unknown environments using a 2D or 3D Lidar sensor.
MATLAB® and Simulink® provide SLAM algorithms, functions, and analysis tools to develop various mapping applications. In this video, you will learn how to use Lidar Toolbox™ with MATLAB to implement 3D Lidar SLAM algorithm on 3D aerial lidar data collected from an unmanned aerial vehicle (UAV). Further, you can use the 3D aerial lidar maps for applications like path planning, obstacle avoidance, and package delivery.
Published: 2 Nov 2021
Related Products
Learn More
Featured Product
Lidar Toolbox
Up Next:
Related Videos:
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)