适用于 5G NR 的 AI
通过引入 Deep Learning Toolbox™ 功能探索适用于 5G NR 通信系统的深度学习工作流。
相关信息
精选示例
Deep Learning Data Synthesis for 5G Channel Estimation
Generate deep learning training data for channel estimation using 5G Toolbox™.
CSI Feedback with Autoencoders
Compress CSI feedback using an autoencoder neural network in a 5G NR communications system.
CSI Feedback with Transformer Autoencoder
Design and train a convolutional transformer deep neural network for channel state information feedback by using a downlink clustered delay line (CDL) channel model.
- 自 R2024b 起
Prepare Data for CSI Processing
Generate channel estimates and prepare a data set to train an autoencoder for channel state information (CSI) feedback compression.
- 自 R2025a 起
CSI Feedback with Autoencoders Implemented on an FPGA
Demonstrates how to use an autoencoder neural network to compress downlink channel state information (CSI) over a clustered delay line (CDL) channel. CSI feedback is in the form of a raw channel estimate array. In this example, the autoencoder network is implemented on an FPGA using the Deep Learning HDL Toolbox™.
(Deep Learning HDL Toolbox)
- 自 R2024b 起
Optimize CSI Feedback Autoencoder Training Using MATLAB Parallel Server and Experiment Manager
Accelerate determination of the optimal training hyperparameters for a channel state information (CSI) autoencoder by using a Cloud Center cluster and Experiment Manager.
- 自 R2024a 起
Online Training and Testing of PyTorch Model for CSI Feedback Compression
Train an autoencoder-based PyTorch® neural network online and test for CSI compression.
- 自 R2025a 起
Offline Training and Testing of PyTorch Model for CSI Feedback Compression
Train an autoencoder-based PyTorch neural network offline and test for CSI compression.
- 自 R2025a 起
Import TensorFlow Channel Feedback Compression Network and Deploy to GPU
Generate GPU specific C++ code for a pretrained TensorFlow™ channel state feedback autoencoder.
- 自 R2023b 起
AI for Positioning Accuracy Enhancement
Use AI to estimate the position of user equipment and compare performance with traditional TDoA techniques.
- 自 R2024a 起
- 打开实时脚本
Neural Network for Beam Selection
Reduce the overhead of beam selection by using the receiver location rather than knowledge of the communication channels.
Train DQN Agent for Beam Selection
Train a deep Q-network (DQN) reinforcement learning agent for beam selection in a 5G new radio communications system.
- 自 R2022b 起
Spectrum Sensing with Deep Learning to Identify 5G, LTE, and WLAN Signals
Train a semantic segmentation network using deep learning for spectrum monitoring.
- 自 R2021b 起
Apply Transfer Learning on PyTorch Model to Identify 5G and LTE Signals
Coexecution with Python to identify 5G NR and LTE signals by using the transfer learning technique on a pre-trained PyTorch™ semantic segmentation network for spectrum sensing.
- 自 R2025a 起
Train PyTorch Channel Prediction Models
Train PyTorch-based channel prediction neural networks using data generated in MATLAB®.
- 自 R2025a 起
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)














