addMetrics
Description
rocmetrics computes the
false positive rates (FPR), true positive rates (TPR), and additional metrics specified by
the AdditionalMetrics
name-value argument. After creating a rocmetrics object, you can
compute additional classification performance metrics by using the
addMetrics function.
computes additional classification performance metrics specified in
UpdatedROCObj = addMetrics(rocObj,metrics)metrics using the classification model information stored in the
rocmetrics object
rocObj.
UpdatedROCObj contains all the information in
rocObj plus additional performance metrics computed by
addMetrics. The function attaches the additional computed metrics
(metrics) as new variables in the table of the Metrics
property.
If you compute confidence intervals when you create rocObj, the
addMetrics function computes the confidence intervals for the
additional metrics. The new variables in the
Metrics property contain a three-column matrix in which the first
column corresponds to the metric values, and the second and third columns correspond to the
lower and upper bounds, respectively. Using confidence intervals
requires Statistics and Machine Learning Toolbox™.
Examples
Compute the performance metrics (FPR, TPR, and expected cost) for a multiclass classification problem when you create a rocmetrics object. Compute additional metrics, the positive predictive value (PPV) and the negative predictive value (NPV), and add them to the object.
Load a sample of true labels and the prediction scores for a classification problem. For this example, there are five classes: daisy, dandelion, roses, sunflowers, and tulips. The class names are stored in classNames. The scores are the softmax prediction scores generated using the predict function. scores is an N-by-K array where N is the number of observations and K is the number of classes. The column order of scores follows the class order stored in classNames.
load('flowersDataResponses.mat')
scores = flowersData.scores;
trueLabels = flowersData.trueLabels;
classNames = flowersData.classNames;Create a rocmetrics object by using the true labels and the classification scores. Specify the column order of scores using classNames. By default, rocmetrics computes the FPR and TPR. Specify AdditionalMetrics="ExpectedCost" to compute the expected cost as well.
rocObj = rocmetrics(trueLabels,scores,classNames, ... AdditionalMetrics="ExpectedCost");
The table in the Metrics property of rocObj contains performance metric values for each of the classes, vertically concatenated according to the class order. Find and display the top rows for the second class in the table.
idx = rocObj.Metrics.ClassName == classNames(2); head(rocObj.Metrics(idx,:))
ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost
_________ _________ _________________ ________________ ____________
dandelion 1 0 0 0.045287
dandelion 1 0 0.23889 0.034469
dandelion 1 0 0.26111 0.033462
dandelion 1 0 0.27222 0.032959
dandelion 1 0 0.28889 0.032204
dandelion 1 0 0.29444 0.031953
dandelion 1 0 0.3 0.031701
dandelion 1 0 0.31111 0.031198
The table in Metrics contains the variables for the class names, threshold, false positive rate, true positive rate, and expected cost (the additional metric).
After creating a rocmetrics object, you can compute additional metrics using the classification model information stored in the object. Compute the PPV and NPV by using the addMetrics function. To overwrite the input argument rocObj, assign the output of addMetrics to the input.
rocObj = addMetrics(rocObj,["PositivePredictiveValue","NegativePredictiveValue"]);
Display the Metrics property for the top rows.
head(rocObj.Metrics(idx,:))
ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost PositivePredictiveValue NegativePredictiveValue
_________ _________ _________________ ________________ ____________ _______________________ _______________________
dandelion 1 0 0 0.045287 NaN 0.7551
dandelion 1 0 0.23889 0.034469 1 0.80202
dandelion 1 0 0.26111 0.033462 1 0.80669
dandelion 1 0 0.27222 0.032959 1 0.80904
dandelion 1 0 0.28889 0.032204 1 0.81259
dandelion 1 0 0.29444 0.031953 1 0.81378
dandelion 1 0 0.3 0.031701 1 0.81498
dandelion 1 0 0.31111 0.031198 1 0.81738
The table in Metrics now includes the PositivePredictiveValue and NegativePredictiveValue variables in the last two columns, in the order you specified. Note that the positive predictive value (PPV = TP/(TP+FP)) is NaN for the reject-all threshold (largest threshold), and the negative predictive value (NPV = TN/(TN+FN)) is NaN for the accept-all threshold (lowest threshold). TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, and false negatives, respectively.
Input Arguments
Object evaluating classification performance, specified as a rocmetrics
object.
Additional model performance metrics to compute, specified as a character vector or string
scalar of the built-in metric name, string array of names, function handle
(@metricName), or cell array of names or function handles. A
rocmetrics object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify
to compute FPR and TPR.
Built-in metrics — Specify one of the following built-in metric names by using a character vector or string scalar. You can specify more than one by using a string array.
Name Description "TruePositives"or"tp"Number of true positives (TP) "FalseNegatives"or"fn"Number of false negatives (FN) "FalsePositives"or"fp"Number of false positives (FP) "TrueNegatives"or"tn"Number of true negatives (TN) "SumOfTrueAndFalsePositives"or"tp+fp"Sum of TP and FP "RateOfPositivePredictions"or"rpp"Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)"RateOfNegativePredictions"or"rnp"Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP+TN)"Accuracy"or"accu"Accuracy, (TP+TN)/(TP+FN+FP+TN)"FalseNegativeRate","fnr", or"miss"False negative rate (FNR), or miss rate, FN/(TP+FN)"TrueNegativeRate","tnr", or"spec"True negative rate (TNR), or specificity, TN/(TN+FP)"PositivePredictiveValue","ppv","prec", or"precision"Positive predictive value (PPV), or precision, TP/(TP+FP)"NegativePredictiveValue"or"npv"Negative predictive value (NPV), TN/(TN+FN)"ExpectedCost"or"ecost"Expected cost,
(TP*cost(P|P)+FN*cost(N|P)+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN), wherecostis a 2-by-2 misclassification cost matrix containing[0,cost(N|P);cost(P|N),0].cost(N|P)is the cost of misclassifying a positive class (P) as a negative class (N), andcost(P|N)is the cost of misclassifying a negative class as a positive class.The software converts the
K-by-Kmatrix specified by theCostname-value argument ofrocmetricsto a 2-by-2 matrix for each one-versus-all binary problem. For details, see Misclassification Cost Matrix."f1score"F1 score, 2*TP/(2*TP+FP+FN)You can obtain all of the previous metrics by specifying "all". You cannot specify"all"in conjunction with any other metric.The software computes the scale vector using the prior class probabilities (
Prior) and the number of classes inLabels, and then scales the performance metrics according to this scale vector. For details, see Performance Metrics.Custom metric — Specify a custom metric by using a function handle. A custom function that returns a performance metric must have this form:
metric = customMetric(C,scale,cost)
The output argument
metricis a scalar value.A custom metric is a function of the confusion matrix (
C), scale vector (scale), and cost matrix (cost). The software finds these input values for each one-versus-all binary problem. For details, see Performance Metrics.Cis a2-by-2confusion matrix consisting of[TP,FN;FP,TN].scaleis a2-by-1scale vector.costis a2-by-2misclassification cost matrix.
The software does not support cross-validation for a custom metric. Instead, you can specify to use bootstrap when you create a
rocmetricsobject.
Note that the positive predictive value (PPV) is
NaN for the reject-all threshold for which TP = FP = 0, and the negative predictive value (NPV) is NaN for the
accept-all threshold for which TN = FN = 0. For more details, see Thresholds, Fixed Metric, and Fixed Metric Values.
Example: ["Accuracy","PositivePredictiveValue"]
Example: {"Accuracy",@m1,@m2} specifies the accuracy metric and the custom
metrics m1 and m2 as additional metrics.
addMetrics stores the custom metric values as variables named
CustomMetric1 and CustomMetric2 in the
Metrics
property.
Data Types: char | string | cell | function_handle
Output Arguments
Object evaluating classification performance, returned as a rocmetrics
object.
To overwrite the input argument rocObj, assign the output of addMetrics to rocObj:
rocObj = addMetrics(rocObj,metrics);
Version History
Introduced in R2022baddmetrics has new metrics:
"f1score", which computes the F1 score."precision", which is the same as"ppv"and"prec"."all", which computes all supported metrics. You cannot use"all"in combination with any other metric.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)