Main Content

Visualization and Interpretability

Plot training progress, assess accuracy, explain predictions, and visualize features learned by a network

Monitor training progress using built-in plots of network accuracy and loss. Investigate trained networks using visualization techniques such as Grad-CAM, occlusion sensitivity, LIME, and deep dream.

Deep Learning Visualization Methods

Apps

Deep Network DesignerDesign and visualize deep learning networks

Objects

trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops (Since R2022b)

Functions

expand all

analyzeNetworkAnalyze deep learning network architecture
plotPlot neural network architecture
updateInfoUpdate information values for custom training loops (Since R2022b)
recordMetricsRecord metric values for custom training loops (Since R2022b)
groupSubPlotGroup metrics in training plot (Since R2022b)
yscaleSet training plot y-axis scale (linear or logarithmic) (Since R2024a)
testnetTest deep learning neural network (Since R2024b)
accuracyMetricDeep learning accuracy metric (Since R2023b)
aucMetricDeep learning area under ROC curve (AUC) metric (Since R2023b)
fScoreMetricDeep learning F-score metric (Since R2023b)
precisionMetricDeep learning precision metric (Since R2023b)
recallMetricDeep learning recall metric (Since R2023b)
rmseMetricDeep learning root mean squared error metric (Since R2023b)
mapeMetricDeep learning mean absolute percentage error metric (Since R2024b)
predictCompute deep learning network output for inference
minibatchpredictMini-batched neural network prediction (Since R2024a)
scores2labelConvert prediction scores to labels (Since R2024a)
confusionchartCreate confusion matrix chart for classification problem
sortClassesSort classes of confusion matrix chart
rocmetricsReceiver operating characteristic (ROC) curve and performance metrics for binary and multiclass classifiers (Since R2022b)
addMetricsCompute additional classification performance metrics (Since R2022b)
aucArea under the ROC curve or area under the PR (precision-recall) curve (Since R2024b)
averageCompute performance metrics for average receiver operating characteristic (ROC) curve in multiclass problem (Since R2022b)
modelOperatingPointOperating point of rocmetrics object (Since R2024b)
plotPlot receiver operating characteristic (ROC) curves and other performance curves (Since R2022b)
imageLIMEExplain network predictions using LIME (Since R2020b)
occlusionSensitivityExplain network predictions by occluding the inputs
deepDreamImageVisualize network features using deep dream
gradCAMExplain network predictions using Grad-CAM (Since R2021a)
driseExplain object detection network predictions using D-RISE (Since R2024a)

Properties

ConfusionMatrixChart PropertiesConfusion matrix chart appearance and behavior
ROCCurve PropertiesReceiver operating characteristic (ROC) curve appearance and behavior (Since R2022b)

Topics

Training Progress and Performance

Interpretability

Featured Examples