本页对应的英文页面已更新,但尚未翻译。 若要查看最新内容,请点击此处访问英文页面。

可视化卷积神经网络的特征

此示例说明如何可视化卷积神经网络学习的特征。

卷积神经网络使用特征对图像进行分类。网络在训练过程中自行学习这些特征。网络在训练过程中学到的内容有时不明确。但是,您可以使用 deepDreamImage 函数将学习的特征可视化。

卷积层输出一个激活三维体,其中沿第三个维度的切片对应于应用到层输入的单个过滤器。网络末尾的全连接层输出的通道对应于较浅层学习的特征的高级组合。

您可以使用 deepDreamImage 生成可强烈激活网络层特定通道的图像,从而将所学习的特征可视化。

该示例需要 Deep Learning Toolbox™,以及 Deep Learning Toolbox Model for GoogLeNet Network 支持包。

加载预训练网络

加载预训练的 GoogLeNet 网络。

net = googlenet;

可视化较浅的卷积层

GoogLeNet 网络中有多个卷积层。靠近网络开头的卷积层具有较小的感受野,用于学习较小的低级特征。靠近网络末端的层具有较大的感受野,用于学习较大的特征。

使用 analyzeNetwork 属性,查看网络架构并找到卷积层。

analyzeNetwork(net)

卷积层 1 上的特征

layer 设置为第一个卷积层。该层是网络中的第二层,名为 'conv1-7x7_s2'

layer = 2;
name = net.Layers(layer).Name
name = 
'conv1-7x7_s2'

通过将 channels 设置为索引 1:36 的向量,使用 deepDreamImage 可视化该层学习的前 36 个特征。将 'PyramidLevels' 设置为 1,以避免图像缩放。要将图像显示在一起,可以使用 imtile

默认情况下,deepDreamImage 使用兼容的 GPU(如果可用)。否则将使用 CPU。在 GPU 上运行需要具有 3.0 或更高计算能力的支持 CUDA® 的 NVIDIA® GPU。

channels = 1:36;
I = deepDreamImage(net,name,channels, ...
    'PyramidLevels',1);
|==============================================|
|  Iteration  |  Activation  |  Pyramid Level  |
|             |   Strength   |                 |
|==============================================|
|           1 |         0.26 |               1 |
|           2 |         6.99 |               1 |
|           3 |        14.24 |               1 |
|           4 |        21.49 |               1 |
|           5 |        28.74 |               1 |
|           6 |        35.99 |               1 |
|           7 |        43.24 |               1 |
|           8 |        50.50 |               1 |
|           9 |        57.75 |               1 |
|          10 |        65.00 |               1 |
|==============================================|
figure
I = imtile(I,'ThumbnailSize',[64 64]);
imshow(I)
title(['Layer ',name,' Features'],'Interpreter','none')

这些图像主要包含边缘和颜色,指示层 'conv1-7x7_s2' 中的过滤器是边缘检测器和颜色过滤器。

卷积层 2 上的特征

第二个卷积层名为 'conv2-3x3_reduce',对应于层 6。通过将 channels 设置为索引 1:36 的向量,可视化该层学习的前 36 个特征。

要在优化过程中隐藏详细输出,请在调用 deepDreamImage. 时将 'Verbose' 设置为 'false'

layer = 6;
name = net.Layers(layer).Name
name = 
'conv2-3x3_reduce'
channels = 1:36;
I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    'PyramidLevels',1);
figure
I = imtile(I,'ThumbnailSize',[64 64]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'],'Interpreter','none')

该层的过滤器将检测比第一个卷积层更复杂的模式。

可视化较深的卷积层

较深的层学习较浅层学习的特征的高级组合。

增加金字塔等级数和每个金字塔等级的迭代次数可以生成更详细的图像,但代价是额外计算。您可以使用 'NumIterations' 选项增加迭代次数,并使用 'PyramidLevels' 选项增加金字塔层级数。

layer = 97;
name = net.Layers(layer).Name
name = 
'inception_4e-1x1'
channels = 1:6;
I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    "NumIterations",20, ...
    'PyramidLevels',2);
figure
I = imtile(I,'ThumbnailSize',[250 250]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'],'Interpreter','none')

请注意,越深入网络的层会产生越详细的滤波器,这些滤波器已学习了复杂的模式和纹理。

可视化全连接层

要生成最接近每个类的图像,请选择全连接层,并将 channels 设置为类的索引。

选择全连接层(层 142)。

layer = 142;
name = net.Layers(layer).Name
name = 
'loss3-classifier'

通过将 channels 设置为这些类名称的索引,选择要可视化的类。

channels = [114 293 341 484 563 950];

这些类存储在输出层(最后一层)的 Classes 属性中。您可以通过选择 channels 中的条目来查看所选类的名称。

net.Layers(end).Classes(channels)
ans = 6×1 categorical
     snail 
     tiger 
     zebra 
     castle 
     fountain 
     strawberry 

生成强烈激活这些类的详细图像。在调用 deepDreamImage 时将 'NumIterations' 设置为 100,以生成更详细的图像。从全连接层生成的图像对应于图像类。

I = deepDreamImage(net,name,channels, ...
    'Verbose',false, ...
    'NumIterations',100, ...
    'PyramidLevels',2);
figure
I = imtile(I,'ThumbnailSize',[250 250]);
imshow(I)
name = net.Layers(layer).Name;
title(['Layer ',name,' Features'])

生成的图像强烈激活所选类。为“zebra”类生成的图像包含明显的斑马条纹,而为“castle”类生成的图像包含塔楼和窗口。

另请参阅

|

相关主题