可视化和验证
在训练期间和训练后,可视化深度网络。使用内置的网络准确度和损失图监控训练进度。为了研究经过训练的网络,您可以使用可视化方法,如 Grad-CAM、遮挡敏感度、LIME 和 Deep Dream。
使用深度学习验证方法来评估深度神经网络的属性。例如,您可以验证网络的稳健性属性,计算网络输出边界,并找到对抗示例。
精选示例
Grad-CAM Reveals the Why Behind Deep Learning Decisions
Use the gradient-weighted class activation mapping (Grad-CAM) technique to understand why a deep learning network makes its classification decisions. Grad-CAM, invented by Selvaraju and coauthors [1], uses the gradient of the classification score with respect to the convolutional features determined by the network in order to understand which parts of the image are most important for classification. This example uses the GoogLeNet pretrained network for images.
Understand Network Predictions Using LIME
Use locally interpretable model-agnostic explanations (LIME) to understand why a deep neural network makes a classification decision.
Generate Untargeted and Targeted Adversarial Examples for Image Classification
Use the fast gradient sign method (FGSM) and the basic iterative method (BIM) to generate adversarial examples for a pretrained neural network.
Train Robust Deep Learning Network with Jacobian Regularization
Train a neural network that is robust to adversarial examples using a Jacobian regularization scheme.
Verify Robustness of Deep Learning Neural Network
Verify the adversarial robustness of a deep learning neural network.
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)