Main Content

可视化深度神经网络

绘制训练进度、评估准确度、解释预测以及将图像网络学习的特征可视化

使用内置的网络准确度和损失图监控训练进度。使用可视化方法,如 Grad-CAM、遮挡敏感度、LIME 和 Deep Dream,研究经过训练的网络。

App

深度网络设计器设计和可视化深度学习网络

函数

全部展开

analyzeNetworkAnalyze deep learning network architecture
trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops (自 R2022b 起)
updateInfoUpdate information values for custom training loops (自 R2022b 起)
recordMetricsRecord metric values for custom training loops (自 R2022b 起)
groupSubPlotGroup metrics in training plot (自 R2022b 起)
plot绘制神经网络架构
testnetTest deep learning neural network (自 R2024b 起)
predictCompute deep learning network output for inference
minibatchpredictMini-batched neural network prediction (自 R2024a 起)
scores2labelConvert prediction scores to labels (自 R2024a 起)
deepDreamImageVisualize network features using deep dream
occlusionSensitivityExplain network predictions by occluding the inputs
imageLIMEExplain network predictions using LIME (自 R2020b 起)
gradCAMExplain network predictions using Grad-CAM (自 R2021a 起)
confusionchartCreate confusion matrix chart for classification problem
sortClassesSort classes of confusion matrix chart
rocmetricsReceiver operating characteristic (ROC) curve and performance metrics for binary and multiclass classifiers (自 R2022b 起)
addMetricsCompute additional classification performance metrics (自 R2022b 起)
averageCompute performance metrics for average receiver operating characteristic (ROC) curve in multiclass problem (自 R2022b 起)

属性

ConfusionMatrixChart PropertiesConfusion matrix chart appearance and behavior
ROCCurve PropertiesReceiver operating characteristic (ROC) curve appearance and behavior (自 R2022b 起)

主题

可解释性

训练进度和性能

精选示例