Design Layer-Recurrent Neural Networks
The next dynamic network to be introduced is the Layer-Recurrent
Network (LRN). An earlier simplified version of this network was introduced
by Elman [Elma90].
In the LRN, there is a feedback loop, with a single delay, around
each layer of the network except for the last layer. The original
Elman network had only two layers, and used a tansig
transfer
function for the hidden layer and a purelin
transfer
function for the output layer. The original Elman network was trained
using an approximation to the backpropagation algorithm. The layrecnet
command generalizes the Elman
network to have an arbitrary number of layers and to have arbitrary
transfer functions in each layer. The toolbox trains the LRN using
exact versions of the gradient-based algorithms discussed in Multilayer Shallow Neural Networks and Backpropagation Training. The following
figure illustrates a two-layer LRN.
The LRN configurations are used in many filtering and modeling applications discussed already. To show its operation, this example uses the pH dataset. Here is the code to load the data and to create and train the network:
[p,t] = ph_dataset;
lrn_net = layrecnet(1,8);
lrn_net.trainFcn = 'trainbr';
lrn_net.trainParam.show = 5;
lrn_net.trainParam.epochs = 50;
lrn_net = train(lrn_net,p,t);
After training, you can plot the response using the following code:
y = lrn_net(p); plot(cell2mat(y)) hold on plot(cell2mat(t)) legend(["Predicted" "Target"]) hold off
The plot shows that the network was able to detect the pH of a solution.
Each time a neural network is trained, can result in a different solution due to different initial weight and bias values and different divisions of data into training, validation, and test sets. As a result, different neural networks trained on the same problem can give different outputs for the same input. To ensure that a neural network of good accuracy has been found, retrain several times.
There are several other techniques for improving upon initial solutions if higher accuracy is desired. For more information, see Improve Shallow Neural Network Generalization and Avoid Overfitting.