bdtprice
Instrument prices from Black-Derman-Toy interest-rate tree
Description
[
computes arbitrage-free prices for instruments using an interest-rate tree created with
Price
,PriceTree
] = bdtprice(BDTTree
,InstSet
)bdttree
. All instruments contained in a
financial instrument variable, InstSet
, are priced.
bdtprice
handles instrument types: 'Bond'
,
'CashFlow'
, 'OptBond'
,
'OptEmBond'
, 'OptFloat'
,
'OptEmFloat'
, 'Fixed'
, 'Float'
,
'Cap'
, 'Floor'
, 'RangeFloat'
,
'Swap'
. See instadd
to construct defined types.
Examples
Price a Float and Cap Instruments Contained in an Instrument Set
Load the BDT tree and instruments from the data file deriv.mat
to
price the Float
and Cap
instruments contained in
the instrument set.
load deriv.mat; BDTSubSet = instselect(BDTInstSet,'Type', {'Float', 'Cap'}); instdisp(BDTSubSet)
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity 1 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8 Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity 2 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN 15% Cap 30
Price the Float
and Cap
.
[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet)
Price = 100.4865 1.4375 PriceTree = struct with fields: FinObj: 'BDTPriceTree' PTree: {[2×1 double] [2×2 double] [2×3 double] [2×4 double] [2×4 double]} AITree: {[2×1 double] [2×2 double] [2×3 double] [2×4 double] [2×4 double]} tObs: [0 1 2 3 4]
You can use the treeviewer
function to see the prices
of these instruments along the price tree.
Price Multi-Stepped Coupon Bonds
Price the following multi-stepped coupon bonds using the following data:
Rates = [0.035; 0.042147; 0.047345; 0.052707]; ValuationDate = 'Jan-1-2010'; StartDates = ValuationDate; EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'}; Compounding = 1; % Create RateSpec RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding); % Create a portfolio of stepped coupon bonds with different maturities Settle = '01-Jan-2010'; Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'}; CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}}; % Display the instrument portfolio ISet = instbond(CouponRate, Settle, Maturity, 1); instdisp(ISet)
Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face 1 Bond [Cell] 01-Jan-2010 01-Jan-2011 1 0 1 NaN NaN NaN NaN 100 2 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 NaN NaN NaN NaN 100 3 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 NaN NaN NaN NaN 100 4 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 NaN NaN NaN NaN 100
Build a BDTTree
to price the stepped coupon bonds. Assume the volatility to be 10%
Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);
% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)
PBDT = 4×1
100.6763
100.7368
100.9266
101.0115
Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds
Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following data: The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707]; ValuationDate = 'Jan-1-2010'; StartDates = ValuationDate; EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'}; Compounding = 1; %Create RateSpec RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding); % Create an instrument portfolio of 3 stepped callable bonds and three % stepped vanilla bonds Settle = '01-Jan-2010'; Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'}; CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}}; OptSpec='call'; Strike=100; ExerciseDates='01-Jan-2011'; %Callable in one year % Bonds with embedded option ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,... ExerciseDates, 'Period', 1); % Vanilla bonds ISet = instbond(ISet, CouponRate, Settle, Maturity, 1); % Display the instrument portfolio instdisp(ISet)
Index Type CouponRate Settle Maturity OptSpec Strike ExerciseDates Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt 1 OptEmBond [Cell] 01-Jan-2010 01-Jan-2012 call 100 01-Jan-2011 1 0 1 NaN NaN NaN NaN 100 0 2 OptEmBond [Cell] 01-Jan-2010 01-Jan-2013 call 100 01-Jan-2011 1 0 1 NaN NaN NaN NaN 100 0 3 OptEmBond [Cell] 01-Jan-2010 01-Jan-2014 call 100 01-Jan-2011 1 0 1 NaN NaN NaN NaN 100 0 Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face 4 Bond [Cell] 01-Jan-2010 01-Jan-2012 1 0 1 NaN NaN NaN NaN 100 5 Bond [Cell] 01-Jan-2010 01-Jan-2013 1 0 1 NaN NaN NaN NaN 100 6 Bond [Cell] 01-Jan-2010 01-Jan-2014 1 0 1 NaN NaN NaN NaN 100
Build a BDTTree
and price the instruments. Build the tree Assume the volatility to be 10%
Sigma = 0.1; BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))'); BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec); %The first three rows corresponds to the price of the stepped callable bonds and the %last three rows corresponds to the price of the stepped vanilla bonds. PBDT = bdtprice(BDTT, ISet)
PBDT = 6×1
100.4799
100.3228
100.0840
100.7368
100.9266
101.0115
Price a Portfolio with Range Notes and a Floating Rate Note
Compute the price of a portfolio with range notes and a floating rate note using the following data: The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707]; ValuationDate = 'Jan-1-2011'; StartDates = ValuationDate; EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'}; Compounding = 1; % Create RateSpec RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,... 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding); % Create an instrument portfolio with two range notes and a floating rate % note with the following data: Spread = 200; Settle = 'Jan-1-2011'; Maturity = 'Jan-1-2014'; % First Range Note: RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'}; RateSched(1).Rates = [0.045 0.055; 0.0525 0.0675; 0.06 0.08]; % Second Range Note: RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'}; RateSched(2).Rates = [0.048 0.059; 0.055 0.068 ; 0.07 0.09]; % Create InstSet InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched); % Add a floating-rate note InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity); % Display the portfolio instrument instdisp(InstSet)
Index Type Spread Settle Maturity RateSched FloatReset Basis Principal EndMonthRule 1 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1 2 RangeFloat 200 01-Jan-2011 01-Jan-2014 [Struct] 1 0 100 1 Index Type Spread Settle Maturity FloatReset Basis Principal EndMonthRule CapRate FloorRate 3 Float 200 01-Jan-2011 01-Jan-2014 1 0 100 1 Inf -Inf
Build a BDTTree
and price the instruments. Build the tree Assume the volatility to be 10%.
Sigma = 0.1;
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);
% Price the portfolio
Price = bdtprice(BDTT, InstSet)
Price = 3×1
100.2841
98.0757
105.5147
Create a Float-Float Swap and Price with bdtprice
Use instswap
to create a float-float swap and price the swap with bdtprice
.
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60)); IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]); VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]); TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1)); BDTTree = bdttree(VolSpec,RateSpec,TimeSpec); bdtprice(BDTTree,IS)
ans = -4.3220
Price Multiple Swaps with bdtprice
Use instswap
to create multiple swaps and price the swaps with bdtprice
.
RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60)); IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]); IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]); IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]); VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]); TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1)); BDTTree = bdttree(VolSpec,RateSpec,TimeSpec); bdtprice(BDTTree,IS)
ans = 3×1
4.3220
-4.3220
-0.2701
Input Arguments
BDTTree
— Interest-rate tree structure
structure
Interest-rate tree structure, specified by using bdttree
.
Data Types: struct
InstSet
— Instrument variable
structure
Instrument variable containing a collection of NINST
instruments,
specified using instadd
. Instruments are categorized by
type; each type can have different data fields. The stored data field is a row vector or
character vector for each instrument.
Data Types: struct
Options
— Derivatives pricing options structure
structure
(Optional) Derivatives pricing options structure, created using derivset
.
Data Types: struct
Output Arguments
Price
— Price for each instrument at time 0
vector
Price for each instrument at time 0, returned as a
NINST
-by-1
vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN
is returned in that entry.
Related single-type pricing functions are:
bondbybdt
— Price a bond from a BDT tree.capbybdt
— Price a cap from a BDT tree.cfbybdt
— Price an arbitrary set of cash flows from a BDT tree.fixedbybdt
— Price a fixed-rate note from a BDT tree.floatbybdt
— Price a floating-rate note from a BDT tree.floorbybdt
— Price a floor from a BDT tree.optbndbybdt
— Price a bond option from a BDT tree.optfloatbybdt
— Price a floating-rate note with an option from a BDT tree.optemfloatbybdt
— Price a floating-rate note with an embedded option from a BDT tree.optembndbybdt
— Price a bond with embedded option by a BDT tree.rangefloatbybdt
— Price range floating note using a BDT tree.swapbybdt
— Price a swap from a BDT tree.swaptionbybdt
— Price a swaption from a BDT tree.
PriceTree
— Tree structure of instrument prices
structure
Tree structure of instrument prices, returned as a MATLAB® structure of trees containing vectors of instrument prices and accrued
interest, and a vector of observation times for each node. Within
PriceTree
:
PriceTree.PTree
contains the clean prices.PriceTree.AITree
contains the accrued interest.PriceTree.tObs
contains the observation times.
Version History
Introduced before R2006a
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)