基于问题的混合整数替代优化
此示例说明如何解决涉及整数变量的优化问题。在此示例中,找到点 x
,使 multirosenbrock
函数在 10 个维度中从 -3 到 6 的整数值参量上最小化。multirosenbrock
函数是一个缩放较差且难以优化的函数。它的最小值为 0,在点 [1,1,...,1]
处达到。multirosenbrock
函数的代码在此示例末尾。
创建一个 10 维行向量变量 x
,类型为整数,边界为 -3 到 6。当您指定标量边界时,该边界将应用到所有变量分量。
x = optimvar("x",1,10,"LowerBound",-3,"UpperBound",6,"Type","integer");
要使用 multirosenbrock
作为目标函数,请使用 fcn2optimexpr
将该函数转换为优化表达式。
fun = fcn2optimexpr(@multirosenbrock,x);
用目标函数 multirosenbrock
创建一个优化问题。
prob = optimproblem("Objective",fun);
将函数计算的最大次数设置为 200。
opts = optimoptions("surrogateopt","MaxFunctionEvaluations",200);
求解。
rng(1,'twister') % For reproducibility [sol,fval] = solve(prob,"Solver","surrogateopt","Options",opts)
Solving problem using surrogateopt.
surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.
sol = struct with fields:
x: [1 1 1 1 1 1 1 1 1 1]
fval = 0
这样一来,surrogateopt
就达到了正确的解。
混合整数问题
假设只有前六个变量是整数值。为了重新表述这个问题,创建一个 6 维整数变量 xint
和一个 4 维连续变量 xcont
。
xint = optimvar("xint",1,6,"LowerBound",-3,"UpperBound",6,"Type","integer"); xcont = optimvar("xcont",1,4,"LowerBound",-3,"UpperBound",6);
使用输入 multirosenbrock
将 [xint xcont]
转换为优化表达式。
fun2 = fcn2optimexpr(@multirosenbrock,[xint xcont]);
創造並解決問題。
prob2 = optimproblem("Objective",fun2); rng(1,'twister') % For reproducibility [sol2,fval2] = solve(prob2,"Solver","surrogateopt","Options",opts)
Solving problem using surrogateopt.
surrogateopt stopped because it exceeded the function evaluation limit set by 'options.MaxFunctionEvaluations'.
sol2 = struct with fields:
xcont: [1.0496 1.1061 1.0507 1.1050]
xint: [1 1 1 1 1 1]
fval2 = 0.0071
这次整数变量达到了正确解,连续变量接近解,但并不完全准确。
辅助函数
以下代码会创建 multirosenbrock
辅助函数。
function F = multirosenbrock(x) % This function is a multidimensional generalization of Rosenbrock's % function. It operates in a vectorized manner, assuming that x is a matrix % whose rows are the individuals. % Copyright 2014 by The MathWorks, Inc. N = size(x,2); % assumes x is a row vector or 2-D matrix if mod(N,2) % if N is odd error('Input rows must have an even number of elements') end odds = 1:2:N-1; evens = 2:2:N; F = zeros(size(x)); F(:,odds) = 1-x(:,odds); F(:,evens) = 10*(x(:,evens)-x(:,odds).^2); F = sum(F.^2,2); end