运行求解器
通过调用运行进行优化
对于 GlobalSearch 和 MultiStart 来说,运行求解器几乎相同。语法上唯一的区别是 MultiStart 接受了描述起点的额外输入。
例如,假设您想找到 sixmin 函数的几个局部极小值
sixmin = 4 x2 – 2.1 x4 + x6/3 + xy – 4 y2 + 4 y4。

该函数也称为六峰驼峰函数[3]。所有局部极小值都位于区域 –3 ≤ x,y ≤ 3 内。
使用 GlobalSearch 运行的示例
要使用 GlobalSearch 查找 sixmin 函数的几个局部极小值,请输入:
% % Set the random stream to get exactly the same output % rng(14,'twister') gs = GlobalSearch; opts = optimoptions(@fmincon,'Algorithm','interior-point'); sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4); problem = createOptimProblem('fmincon','x0',[-1,2],... 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],... 'options',opts); [xming,fming,flagg,outptg,manyminsg] = run(gs,problem);
运行的输出(根据随机种子而变化):
xming,fming,flagg,outptg,manyminsg
xming =
0.0898 -0.7127
fming =
-1.0316
flagg =
1
outptg =
struct with fields:
funcCount: 2115
localSolverTotal: 3
localSolverSuccess: 3
localSolverIncomplete: 0
localSolverNoSolution: 0
message: 'GlobalSearch stopped because it analyzed all the trial po...'
manyminsg =
1x2 GlobalOptimSolution array with properties:
X
Fval
Exitflag
Output
X0使用 MultiStart 的运行的示例
要使用 50 次 fmincon 和 MultiStart 运行来查找 sixmin 函数的几个局部极小值,请输入:
% % Set the random stream to get exactly the same output % rng(14,'twister') ms = MultiStart; opts = optimoptions(@fmincon,'Algorithm','interior-point'); sixmin = @(x)(4*x(1)^2 - 2.1*x(1)^4 + x(1)^6/3 ... + x(1)*x(2) - 4*x(2)^2 + 4*x(2)^4); problem = createOptimProblem('fmincon','x0',[-1,2],... 'objective',sixmin,'lb',[-3,-3],'ub',[3,3],... 'options',opts); [xminm,fminm,flagm,outptm,manyminsm] = run(ms,problem,50);
运行的输出(根据随机种子而变化):
xminm,fminm,flagm,outptm,manyminsm
xminm =
0.0898 -0.7127
fminm =
-1.0316
flagm =
1
outptm =
struct with fields:
funcCount: 2034
localSolverTotal: 50
localSolverSuccess: 50
localSolverIncomplete: 0
localSolverNoSolution: 0
message: 'MultiStart completed the runs from all start points.…'
manyminsm =
1x6 GlobalOptimSolution array with properties:
X
Fval
Exitflag
Output
X0在这种情况下,MultiStart 位于所有六个局部极小值,而 GlobalSearch 位于两个。有关 MultiStart 解的图片,请请参阅 可视化吸引力盆地。
