depthToSpace
Description
rearranges data of the formatted Y
= depthToSpace(X
,blockSize
)dlarray
object, X
,
from the depth dimension into spatial blocks of size blockSize
.
Given an input feature map of size [H
W
C*
height*
width]
and blocks of size [height
width], the output feature map size is
[H*height
W*width
C].
This function requires Deep Learning Toolbox™.
modifies aspects of the depth-to-space rearranging operation using name-value arguments. If
Y
= depthToSpace(X
,blockSize
,Name,Value
)X
is an unformatted dlarray
, then you must specify
the DataFormat
name-value pair argument.
Examples
Rearrange Formatted dlarray Data from Depth to Spatial Dimension
Create a numeric array of height 2 and width 2 that simulates the depthwise concatenation of blocks of size 2-by-2.
X = reshape(1:48,2,2,12);
Create a dlarray
object that contains the numeric data, specifying the format of the data as 'SSC' (spatial, spatial, channel).
X = dlarray(X,'SSC')
X = 2(S) x 2(S) x 12(C) dlarray (:,:,1) = 1 3 2 4 (:,:,2) = 5 7 6 8 (:,:,3) = 9 11 10 12 (:,:,4) = 13 15 14 16 (:,:,5) = 17 19 18 20 (:,:,6) = 21 23 22 24 (:,:,7) = 25 27 26 28 (:,:,8) = 29 31 30 32 (:,:,9) = 33 35 34 36 (:,:,10) = 37 39 38 40 (:,:,11) = 41 43 42 44 (:,:,12) = 45 47 46 48 2(S) x 2(S) x 12(C) dlarray
Specify a 2-by-2 block size for reordering input activations.
blockSize = 2;
Rearrange blocks of data from the depth dimension to the spatial dimensions.
Z = depthToSpace(X,blockSize)
Z = 4(S) x 4(S) x 3(C) dlarray (:,:,1) = 1 13 3 15 25 37 27 39 2 14 4 16 26 38 28 40 (:,:,2) = 5 17 7 19 29 41 31 43 6 18 8 20 30 42 32 44 (:,:,3) = 9 21 11 23 33 45 35 47 10 22 12 24 34 46 36 48
Rearrange Unformatted Data from Depth to Spatial Dimensions
Create a numeric array of height 2 and width 2 that simulates the depthwise concatenation of blocks of size 2-by-2.
X = reshape(1:48,2,2,12);
Create an unformatted dlarray
object that contains the numeric data.
dlX = dlarray(X);
Specify a 2-by-2 block size for reordering input activations.
blockSize = 2;
Rearrange blocks of data from the depth dimension to the spatial dimensions, specifying the data format. Order the data by column, row, and then depth.
dlZ = depthToSpace(dlX,blockSize,"DataFormat","SSC","Mode","CRD")
dlZ = 4x4x3 dlarray (:,:,1) = 1 5 3 7 9 13 11 15 2 6 4 8 10 14 12 16 (:,:,2) = 17 21 19 23 25 29 27 31 18 22 20 24 26 30 28 32 (:,:,3) = 33 37 35 39 41 45 43 47 34 38 36 40 42 46 44 48
Input Arguments
X
— Deep learning data to rearrange
dlarray
object
Deep learning data to rearrange, specified as a dlarray
(Deep Learning Toolbox)
object.
blockSize
— Block size to reorder input activation
positive integer | vector of two positive integers
Block size to reorder the input activation, specified as a positive integer or
vector of two positive integers of the form [h w]
, where
h
is the height and w
is the width. When you
specify blockSize
as a scalar, the function uses the same value for
both dimensions.
Example:
[2 4]
specifies blocks of height 2 and width 4.
Example:
32
specifies blocks of height and width 32.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'DataFormat',"SSC"
specifies an array with two spatial
dimensions and one channel dimension, appropriate for 2-D RGB image data.
DataFormat
— Dimension labels
"SSCB"
(default) | string scalar | character vector
Dimension labels when the input deep learning data X
is
unlabeled, specified as a string scalar or character vector. The number of labels must
match the number of dimensions of the input data, X
. Each
character in 'DataFormat
' must be one of these labels:
S
— SpatialC
— ChannelB
— Batch observations
The "T" (time or sequence) and "U" (unspecified) labels are not supported. Do not
specify the 'DataFormat
' argument when the input deep learning
data is a formatted dlarray
object.
Example: "SSCB"
indicates the array has two spatial dimensions,
one channel dimension, and one batch dimension.
Data Types: char
| string
Mode
— Order of rearranged dimensions
"DCR"
(default) | "CRD"
Order of rearranged dimensions from the input deep learning data
X
, specified as "DCR"
or
"CRD"
. When you specify "DCR"
, the function
orders data by depth, column, and then row. When you specify "CRD"
,
the function orders data by column, row, and then depth.
Data Types: char
| string
Output Arguments
Y
— Rearranged deep learning data
dlarray
object
Rearranged deep learning data, returned as a dlarray
(Deep Learning Toolbox)
object.
Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see Image Processing on a GPU.
Version History
Introduced in R2021a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)