qubo
Installation Required: This functionality requires MATLAB Support Package for Quantum Computing.
Description
A Quadratic Unconstrained Binary Optimization (QUBO) problem for a binary vector x with N components is to minimize the objective function
Create a QUBO problem by specifying the Q matrix, c vector, and d scalar value.
Creation
Description
returns
a QUBO problem object with quadratic term qprob
= qubo(Q
)Q
, and sets the QuadraticTerm property.
returns a QUBO problem with quadratic term qprob
= qubo(Q
,c
)Q
and linear term
c
, and sets the LinearTerm property.
returns a QUBO problem with quadratic term qprob
= qubo(Q
,c
,d
)Q
, linear term
c
, and constant term d
, and sets the ConstantTerm property. If the
problem has no linear term, set c = []
.
Input Arguments
Properties
Object Functions
evaluateObjective | Evaluate QUBO (Quadratic Unconstrained Binary Optimization) objective |
solve | Solve QUBO (Quadratic Unconstrained Binary Optimization) problem |
Examples
Algorithms
The tabu search algorithm is based on Palubeckis [1]. Starting from a random binary vector, the software repeatedly attempts to find a binary vector with a lower objective function value by switching some existing values from 1 to 0 or from 0 to 1. The software tries to avoid cycling, or the repeated evaluation of the same point, by using a tabu list. For details, see Tabu Search Algorithm.
References
[1] Palubeckis, G. Iterated Tabu Search for the Unconstrained Binary Quadratic Optimization Problem. Informatica (2006), 17(2), pp. 279–296. Available at https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3c323a1d41cd0e2ca1ddb27192e475ea73959e52.
Version History
Introduced in R2023a