Main Content

本页翻译不是最新的。点击此处可查看最新英文版本。

var

说明

V = var(A) 返回 A 沿大小大于 1 的第一个数组维度计算的元素的方差。默认情况下,方差按 N-1 实现归一化,其中 N 是观测值数量。

  • 如果 A 是观测值的向量,则 V 是标量。

  • 如果 A 是一个列为随机变量且行为观测值的矩阵,则 V 是一个包含与每列对应的方差的行向量。

  • 如果 A 是多维数组,则 var(A) 沿大小大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中 V 的大小变为 1,而所有其他维度的大小仍与在 A 中相同。

  • 如果 A 是标量,则 V0

  • 如果 A 是一个 0×0 的空数组,则 VNaN

  • 如果 A 是表或时间表,则 var(A) 返回单行表,其中包含每个变量的方差。 (自 R2023a 起)

示例

V = var(A,w) 指定加权方案。当 w = 0(默认值)时,方差按 N-1 实现归一化,其中 N 是观测值数量。如果 w = 1,则方差按观测值数量实现归一化。w 也可以是包含非负元素的权重向量。在这种情况下,w 的长度必须等于 var 将作用于的维度的长度。

示例

w 为 0 或 1 时,V = var(A,w,"all") 返回 A 的所有元素的方差。

V = var(A,w,dim) 返回沿维度 dim 计算的方差。要维持默认归一化并指定运算的维度,请在第二个参量中设置 w = 0

示例

w 为 0 或 1 时,V = var(A,w,vecdim) 返回向量 vecdim 中指定维度的方差。例如,如果 A 是矩阵,则 var(A,0,[1 2]) 返回 A 中所有元素的方差,因为矩阵的每个元素包含在由维度 1 和 2 定义的数组切片中。

示例

V = var(___,nanflag) 在上述任一语法的基础上指定包含还是省略 A 中的 NaN 值。例如,var(A,"omitnan") 在计算方差时会忽略 NaN 的值。默认情况下,var 包括 NaN 值。

示例

[V,M] = var(___) 还返回 A 中用于计算方差的元素的均值。如果 V加权方差,则 M加权均值

示例

示例

全部折叠

创建一个矩阵并计算其方差。

A = [4 -7 3; 1 4 -2; 10 7 9];
var(A)
ans = 1×3

   21.0000   54.3333   30.3333

创建一个三维数组并计算其方差。

A(:,:,1) = [1 3; 8 4];
A(:,:,2) = [3 -4; 1 2];
var(A)
ans = 
ans(:,:,1) =

   24.5000    0.5000


ans(:,:,2) =

     2    18

创建一个矩阵并根据权重向量 w 计算其方差。

A = [5 -4 6; 2 3 9; -1 1 2];
w = [0.5 0.25 0.25];
var(A,w)
ans = 1×3

    6.1875    9.5000    6.1875

创建一个矩阵并沿第一个维度计算其方差。

A = [4 -2 1; 9 5 7];
var(A,0,1)
ans = 1×3

   12.5000   24.5000   18.0000

沿第二个维度计算 A 的方差。

var(A,0,2)
ans = 2×1

     9
     4

创建一个三维数组并计算每页数据(行和列)的方差。

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
V = var(A,0,[1 2])
V = 
V(:,:,1) =

    6.2500


V(:,:,2) =

    60


V(:,:,3) =

   20.9167

创建一个包含 NaN 值的矩阵。

A = [1.77 -0.005 NaN -2.95; NaN 0.34 NaN 0.19]
A = 2×4

    1.7700   -0.0050       NaN   -2.9500
       NaN    0.3400       NaN    0.1900

计算矩阵的方差,不包括 NaN 值。对于包含任一 NaN 值的矩阵列,var 使用非 NaN 元素进行计算。对于包含的值都是 NaN 的矩阵列,方差为 NaN

V = var(A,"omitnan")
V = 1×4

         0    0.0595       NaN    4.9298

创建一个矩阵并计算每列的方差和均值。

A = [4 -7 3; 1 4 -2; 10 7 9];
[V,M] = var(A)
V = 1×3

   21.0000   54.3333   30.3333

M = 1×3

    5.0000    1.3333    3.3333

创建一个矩阵,根据权重向量 w 计算每列的加权方差和加权均值。

A = [5 -4 6; 2 3 9; -1 1 2];
w = [0.5 0.25 0.25];
[V,M] = var(A,w)
V = 1×3

    6.1875    9.5000    6.1875

M = 1×3

    2.7500   -1.0000    5.7500

输入参数

全部折叠

输入数组,指定为向量、矩阵、多维数组、表或时间表。如果 A 是标量,则 var(A) 返回 0。如果 A 是一个 0×0 的空数组,则 var(A) 返回 NaN

数据类型: single | double | table | timetable
复数支持:

权重,指定为以下值之一:

  • 0 - 按 N-1 实现归一化,其中 N 是观测值的数量。如果只有一个观测值,则权重为 1。

  • 1 - 按 N 实现归一化。

  • 由非负标量权重构成的向量,这些权重对应于沿其计算方差的 A 的维度。

数据类型: single | double

沿其运算的维度,指定为正整数标量。如果不指定维度,则默认为第一个大于 1 的数组维度。

维度 dim 表示长度减至 1 的维度。size(V,dim)1,而所有其他维度的大小保持不变。

以一个 m×n 输入矩阵 A 为例:

  • var(A,0,1) 计算 A 的每列中元素的方差,并返回一个 1×n 行向量。

    var(A,0,1) column-wise computation

  • var(A,0,2) 计算 A 的每行中元素的方差,并返回一个 m×1 列向量。

    var(A,0,2) row-wise computation

如果 dim 大于 ndims(A),则 var(A) 返回大小与 A 相同的由零组成的数组。

维度向量,指定为正整数向量。每个元素代表输入数组的一个维度。指定的操作维度的输出长度为 1,而其他保持不变。

以 2×3×3 输入数组 A 为例。然后 var(A,0,[1 2]) 返回 1×1×3 数组,其元素是在 A 的每页上计算的方差。

Mapping of a 2-by-3-by-3 input array to a 1-by-1-by-3 output array

缺失值条件,指定为下列值之一:

  • "includemissing""includenan" - 在计算方差时包括 A 中的 NaN 值。如果运算维度中的任一元素是 NaN,则 V 中的对应元素也是 NaN"includemissing""includenan" 具有相同的行为。

  • "omitmissing""omitnan" - 忽略 Aw 中的 NaN 值,并基于较少的点计算方差。如果运算维度中的所有元素都是 NaN,则 V 中的对应元素是 NaN"omitmissing""omitnan" 具有相同的行为。

输出参量

全部折叠

方差,以标量、向量、矩阵、多维数组或表形式返回。

  • 如果 A 是观测值的向量,则 V 是标量。

  • 如果 A 是一个列为随机变量且行为观测值的矩阵,则 V 是一个包含与每列对应的方差的行向量。

  • 如果 A 是多维数组,则 var(A) 沿大小大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中 V 的大小变为 1,而所有其他维度的大小仍与在 A 中相同。

  • 如果 A 是标量,则 V0

  • 如果 A 是一个 0×0 的空数组,则 VNaN

  • 如果 A 是表或时间表,则 V 是单行表。如果 A 的变量有单位,则 V 的变量没有那些单位。 (自 R2023a 起)

均值,以标量、向量、矩阵、多维数组或表形式返回。

  • 如果 A 是观测值的向量,则 M 是标量。

  • 如果 A 是一个列为随机变量且行为观测值的矩阵,则 M 是一个包含与每列对应的均值的行向量。

  • 如果 A 是多维数组,则 var(A) 沿大小大于 1 的第一个数组维度计算,并将这些元素视为向量。此维度中 M 的大小变为 1,而所有其他维度的大小仍与在 A 中相同。

  • 如果 A 是标量,则 M 等于 A

  • 如果 A 是一个 0×0 的空数组,则 MNaN

  • 如果 A 是表或时间表,则 M 是单行表。如果 A 的变量有单位,则 M 的变量有相同的单位。 (自 R2023a 起)

如果 V 是加权方差,则 M 是加权均值。

详细信息

全部折叠

方差

对于由 N 个标量观测值组成的随机变量向量 A,方差定义为

V=1N1i=1N|Aiμ|2

,其中 μA 的均值,

μ=1Ni=1NAi.

有些方差的定义使用归一化因子 N 而非 N – 1。您可以通过指定权重 1 来使用归一化因子 N,从而生成样本关于其均值的二阶矩。

无论方差的归一化因子是什么,都假定均值具有归一化因子 N

加权方差

对于由 N 个标量观测值组成的有限长度向量 A 和加权方案 w,加权方差被定义为

Vw=i=1Nwi|Aiμw|2i=1Nwi

,其中 μwA加权均值

加权均值

对于由 N 个标量观测值组成的有限长度向量 A 和加权方案 w,加权均值定义为

μw=i=1NwiAii=1Nwi

扩展功能

版本历史记录

在 R2006a 之前推出

全部展开

另请参阅

| | |