Main Content

predict

Predict state and state error covariance

Since R2021b

    Description

    predict(slamObj,controlInput) predicts the state and state error covariance. predict uses the StateTransitionFcn property of the ekfSLAM object, slamObj, and the controller input controlInput to predict the state.

    predict(slamObj,controlInput,varargin) passes all additional arguments specified in varargin to the underlying StateTransitionFcn property of slamObj.

    The first input to StateTransitionFcn is the pose from the previous time step, followed by all user-defined arguments in varargin.

    example

    Examples

    collapse all

    Load a race track data set that contains the initial vehicle state, initial vehicle state covariance, process noise covariance, control input, time step size, measurement, measurement covariance, and validation gate values.

    load("racetrackDataset.mat","initialState","initialStateCovariance", ...
         "processNoise","controllerInputs","timeStep", ...
         "measurements","measCovar","validationGate");

    Create an ekfSLAM object with initial state, initial state covariance, and process noise.

    ekfSlamObj = ekfSLAM("State",initialState, ...
                         "StateCovariance",initialStateCovariance, ...
                         "ProcessNoise",processNoise);

    Initialize a variable to store the pose.

    storedPose = nan(size(controllerInputs,1)+1,3);
    storedPose(1,:) = ekfSlamObj.State(1:3);

    Predict the state using the control input and time step size for the state transition function. Then, correct the state using the data of the observed landmarks, measurement covariance, and validation gate for the data association function.

    for count = 1:size(controllerInputs,1)
        % Predict the state
        predict(ekfSlamObj,controllerInputs(count,:),timeStep);
     
        % Get the landmarks in the environment
        observedLandmarks = measurements{count};
     
        % Correct the state
        if ~isempty(observedLandmarks)
            correct(ekfSlamObj,observedLandmarks, ...
                    measCovar,validationGate);
        end
      
        % Log the estimated pose
        storedPose(count+1,:) = ekfSlamObj.State(1:3);
    end

    Visualize the created map.

    fig = figure;
    figAx = axes(fig);
    axis equal
    grid minor
    hold on
    plot(figAx,storedPose(:,1),storedPose(:,2),"g.-")
    landmarks = reshape(ekfSlamObj.State(4:end),2,[])';
    plot(figAx,landmarks(:,1),landmarks(:,2),"m+")
    plot(figAx,storedPose(1,1),storedPose(1,2),"k*")
    plot(figAx,storedPose(end,1),storedPose(end,2),"rd")
    legend("Robot trajectory","Landmarks","Start","End")

    Figure contains an axes object. The axes object contains 4 objects of type line. One or more of the lines displays its values using only markers These objects represent Robot trajectory, Landmarks, Start, End.

    Input Arguments

    collapse all

    EKF SLAM object, specified as a ekfSLAM object.

    Controller input required to propagate the state from initial value to final value, specified as an N-element vector.

    Note

    The dimension of the process noise must be equal to the number of elements in controlInput.

    Data Types: single | double

    Variable-length input argument list, specified as a comma-separated list. This input is passed directly into the StateTransitionFcn property of slamObj to evolve the state. When you call:

    predict(slamObj,controlInput,arg1,arg2)

    MATLAB® essentially calls the stateTransitionFcn as:

    stateTransitionFcn(pose(k-1),controlInput,arg1,arg2)

    Extended Capabilities

    C/C++ Code Generation
    Generate C and C++ code using MATLAB® Coder™.

    Version History

    Introduced in R2021b