Main Content

fryeJacobsLGD

Compute conditional loss given default (LGD) using Frye-Jacobs model

Since R2024b

    Description

    ConditionalLGD = fryeJacobsLGD(ConditionalPD,BaselinePD,BaselineLGD,Correlation) returns the conditional loss given default (LGD), where ConditionalPD is the conditional probability of default (PD), BaselinePD is the baseline PD, BaselineLGD is the baseline LGD, and Correlation is a correlation parameter.

    example

    Examples

    collapse all

    Use the fryeJacobsLGD function to compute the conditional LGD with scalar inputs.

    First, specify the input arguments.

    ConditionalPD = 0.05;
    BaselinePD = 0.08;
    BaselineLGD = 0.40;
    Correlation = 0.20;

    Return the conditional LGD and display the result.

    ConditionalLGD = fryeJacobsLGD(ConditionalPD,BaselinePD,BaselineLGD,Correlation);
    disp(ConditionalLGD);
        0.3197
    

    Use the fryeJacobsLGD function to compute the conditional LGD with scalar and vector input arguments.

    First, specify the input arguments.

    ConditionalPD = [0.05 0.10 0.15]';
    BaselinePD = [0.08 0.09 0.10]';
    BaselineLGD = [0.40 0.45 0.50]';
    Correlation = 0.20;

    Return the conditional LGD and display the result.

    ConditionalLGD = fryeJacobsLGD(ConditionalPD,BaselinePD,BaselineLGD,Correlation);
    disp(ConditionalLGD);
        0.3197
        0.4151
        0.4971
    

    Input Arguments

    collapse all

    Conditional PD, specified as a real-valued numeric scalar or numeric vector with values in the range (0, 1). If you specify a scalar and any other input argument is a vector, ConditionalPD undergoes scalar expansion to match the length of the other vector input arguments. If you specify a vector, its length must match the length of all other vector input arguments.

    Baseline PD, specified as a real-valued numeric scalar or numeric vector with values in the range (0, 1). If you specify a scalar and any other input argument is a vector, BaselinePD undergoes scalar expansion to match the length of the other vector input arguments. If you specify a vector, its length must match the length of all other vector input arguments.

    Baseline LGD, specified as a real-valued numeric scalar or numeric vector with values in the range (0, 1]. If you specify a scalar and any other input argument is a vector, BaselineLGD undergoes scalar expansion to match the length of the other vector input arguments. If you specify a vector, its length must match the length of all other vector input arguments.

    Correlation parameter, specified as a real-valued numeric scalar or numeric vector with values in the range [0, 1). If you specify a scalar and any other input argument is a vector, Correlation undergoes scalar expansion to match the length of the other vector input arguments. If you specify a vector, its length must match the length of all other vector input arguments. For information on estimating Correlation, see Calculating Regulatory Capital with the ASRF Model.

    Output Arguments

    collapse all

    Conditional LGD, returned as a real-valued numeric scalar or numeric vector.

    More About

    collapse all

    Frye-Jacobs Function

    The fryeJacobsLGD function for the conditional LGD is based on the following equation:

    ConditionalLGD=Φ(Φ1(ConditionalPD)Φ1(BaselinePD)Φ1(BaselinePD*BaselineLGD)1Correlation)/ConditionalPD

    where Φ is the normal cumulative distribution function (CDF) and Φ–1 is the inverse normal CDF.

    References

    [1] Frye, Jon, and Michael Jacobs. “Credit Loss and Systematic Loss given Default.” The Journal of Credit Risk 8, No. 1 (March 2012): 109–40.

    [2] Frye, Jon. “The simple link from default to LGD.” Risk, London (March 2014): 60–65.

    Version History

    Introduced in R2024b