schurmr
(Not recommended) Balanced model truncation via Schur method
schurmr
is not recommended. Use
reducespec
instead. (since R2023b) For more information on updating
your code, see Version History.
Syntax
GRED = schurmr(G) GRED = schurmr(G,order) [GRED,redinfo] = schurmr(G,key1,value1,...) [GRED,redinfo] = schurmr(G,order,key1,value1,...)
Description
schurmr
returns a reduced order model
GRED
of G and a struct array redinfo containing the error
bound of the reduced model and Hankel singular values of the original system.
The error bound is computed based on Hankel singular values of G
. For a stable system
Hankel singular values indicate the respective state energy of the system. Hence,
reduced order can be directly determined by examining the system Hankel SV's,
σι.
With only one input argument G
, the function will show a Hankel
singular value plot of the original model and prompt for model order number to
reduce.
This method guarantees an error bound on the infinity norm of the additive error ∥ G-GRED
∥∞ for well-conditioned model reduced problems [1]:
This table describes input arguments for schurmr
.
Argument | Description |
---|---|
G | LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order). |
ORDER | (Optional) an integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs |
A batch run of a serial of different reduced order models can be generated by
specifying order = x:y
, or a vector of integers. By default, all
the anti-stable part of a system is kept, because from control stability point of
view, getting rid of unstable state(s) is dangerous to model a system.
'
MaxError
'
can be
specified in the same fashion as an alternative for '
ORDER
'
. In this case, reduced order will be determined when the sum of
the tails of the Hankel sv's reaches the
'
MaxError
'
.
Argument | Value | Description |
---|---|---|
'MaxError' | A real number or a vector of different errors | Reduce to achieve H∞ error. When present,
|
'Weights' |
| Optimal 1x2 cell array of LTI weights
|
'Display' |
| Display Hankel singular plots (default
|
'Order' | Integer, vector or cell array | Order of reduced model. Use only if not specified as 2nd argument. |
Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.
This table describes output arguments.
Argument | Description |
---|---|
GRED | LTI reduced order model. Becomes multi-dimensional array when input is a serial of different model order array. |
REDINFO | A STRUCT array with 3 fields:
|
G
can be stable or unstable. G
and
GRED
can be either continuous or discrete.
Examples
Given a continuous or discrete, stable or unstable system, G
, the
following commands can get a set of reduced order models based on your
selections:
rng(1234,'twister'); G = rss(30,5,4); [g1, redinfo1] = schurmr(G); % display Hankel SV plot % and prompt for order (try 15:20) [g2, redinfo2] = schurmr(G,20); [g3, redinfo3] = schurmr(G,[10:2:18]); [g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]); for i = 1:4 figure(i); eval(['sigma(G,g' num2str(i) ');']); end
Algorithms
Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the kth order reduced model [16].
Find the controllability and observability Gramians P and Q.
Find the Schur decomposition for PQ in both ascending and descending order, respectively,
Find the left/right orthonormal eigen-bases of PQ associated with the kth big Hankel singular values.
Find the SVD of (VTL,BIG VR,BIG) = U Σ VT
Form the left/right transformation for the final kth order reduced model
SL,BIG = V L,BIG UΣ(1:k,1:k)–½
SR,BIG = VR,BIGVΣ(1:k,1:k)–½
Finally,
The proof of the Schur balance truncation algorithm can be found in [2].
References
[1] K. Glover, “All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L∝- error Bounds,” Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model Reduction,” IEEE Trans. on Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733.