xyzquat
Convert transformation or rotation to compact 3-D pose representation
Since R2023b
Description
Examples
Convert SE(3) Transformation to 3-D Compact Pose
Create SE(3) transformation with an xyz-position of [2 3 1]
and a rotation defined by a numeric quaternion. Use the eul2quat
function to create the numeric quaternion.
trvec = [2 3 1]; quat1 = eul2quat([0 0 deg2rad(30)]); pose1 = [trvec quat1]
pose1 = 1×7
2.0000 3.0000 1.0000 0.9659 0.2588 0 0
T = se3(pose1,"xyzquat")
T = se3
1.0000 0 0 2.0000
0 0.8660 -0.5000 3.0000
0 0.5000 0.8660 1.0000
0 0 0 1.0000
Convert the transformation back into a compact pose.
pose2 = xyzquat(T)
pose2 = 1×7
2.0000 3.0000 1.0000 0.9659 0.2588 0 0
Convert SO(3) Rotation to 3-D Compact Pose
Create SO(3) rotation defined by a numeric quaternion. Use the eul2quat
function to create the numeric quaternion.
quat1 = eul2quat([0 0 deg2rad(30)])
quat1 = 1×4
0.9659 0.2588 0 0
R = so3(quat1,"quat")
R = so3
1.0000 0 0
0 0.8660 -0.5000
0 0.5000 0.8660
Convert the rotation into a 3-D compact pose.
pose1 = xyzquat(R)
pose1 = 1×7
0 0 0 0.9659 0.2588 0 0
Input Arguments
transformation
— Transformation
se3
object | N-element array of se3
objects
Transformation, specified as an se3
object or as an
N-element array of se3
objects.
N is the total number of transformations.
rotation
— Rotation
so3
object | N-element array of so3
objects
Rotation, specified as an so3
object or as an
N-element array of so3
objects.
N is the total number of rotations.
Output Arguments
pose
— 3-D compact pose
M-by-3 matrix
3-D compact pose, returned as an M-by-3 matrix, where each row is of the form [x y z qw qx qy qz]. M is the total number of transformations specified. x, y, z comprise the xyz-position and qw, qx, qy, and qz comprise the quaternion rotation.
Version History
Introduced in R2023b
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)