Main Content
Cross-Correlation with Multichannel Input
Generate three 11-sample exponential sequences given by , , and , with . Use stem3
to plot the sequences side by side.
N = 11;
n = (0:N-1)';
a = 0.4;
b = 0.7;
c = 0.999;
xabc = [a.^n b.^n c.^n];
stem3(n,1:3,xabc','filled')
ax = gca;
ax.YTick = 1:3;
view(37.5,30)
Compute the autocorrelations and mutual cross-correlations of the sequences. Output the lags so you do not have to keep track of them. Normalize the result so the autocorrelations have unit value at zero lag.
[cr,lgs] = xcorr(xabc,'coeff'); for row = 1:3 for col = 1:3 nm = 3*(row-1)+col; subplot(3,3,nm) stem(lgs,cr(:,nm),'.') title(sprintf('c_{%d%d}',row,col)) ylim([0 1]) end end
Restrict the calculation to lags between and .
[cr,lgs] = xcorr(xabc,5,'coeff'); for row = 1:3 for col = 1:3 nm = 3*(row-1)+col; subplot(3,3,nm) stem(lgs,cr(:,nm),'.') title(sprintf('c_{%d%d}',row,col)) ylim([0 1]) end end
Compute unbiased estimates of the autocorrelations and mutual cross-correlations. By default, the lags run between and .
cu = xcorr(xabc,'unbiased'); for row = 1:3 for col = 1:3 nm = 3*(row-1)+col; subplot(3,3,nm) stem(-(N-1):(N-1),cu(:,nm),'.') title(sprintf('c_{%d%d}',row,col)) end end