Table Data Tuning
You can estimate matrix or multi-dimensional table values from measured data. You can also specify design requirements at the command line, and optimize the table values.
Functions
sdo.requirements.FunctionMatching | Impose function matching constraint on variable |
sdo.requirements.MonotonicVariable | Impose monotonic constraint on variable |
sdo.requirements.PhasePlaneEllipse | Impose elliptic bound on phase plane trajectory of two signals |
sdo.requirements.PhasePlaneRegion | Impose region bound on phase plane trajectory of two signals |
sdo.requirements.RelationalConstraint | Impose relational constraint on pair of variables |
sdo.requirements.SmoothnessConstraint | Impose bounds on gradient magnitude of variable |
evalRequirement | Evaluate design requirement |
Topics
- How to Estimate Lookup Table Values
Estimating lookup table values is an example of estimating parameters which are matrices or multi-dimensional arrays.
- Estimate Lookup Table Values from Data
This example shows how to estimate lookup table values from time-domain input-output (I/O) data in the Parameter Estimator.
- Estimate Constrained Values of a Lookup Table
This example shows how to estimate constrained values of a lookup table in the Parameter Estimator.
- Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)
Impose design requirements on the parameters in a lookup table and then tune the parameters.
- Design Optimization Using Lookup Table Requirements for Gain Scheduling (GUI)
Impose design requirements on the parameters in a lookup table in the Response Optimizer, and tune the parameters.