ee_generateIdealPMSMfluxData
Generate tabulated flux linkage data for ideal PMSM
Syntax
Description
[
generates 4-D flux linkage data, including torque and partial
derivatives, for an ideal permanent magnet synchronous motor (PMSM). F
,T
,dFdA
,dFdB
,dFdC
,dFdX
]
= ee_generateIdealPMSMfluxData(PM
,Ld
,Lq
,L0
,A
,B
,C
,X
)
Use this function to create test data for the FEM-Parameterized PMSM block, either for validation purposes or to set up a model before the actual flux linkage data is available.
Examples
Generate 4-D Flux Linkage Data
Specify the motor parameters.
PM = 0.1; % Permanent magnet flux N = 6; % Number of pole pairs Ld = 0.0002; % D-axis inductance Lq = 0.0002; % Q-axis inductance L0 = 0.00018; % Zero-sequence inductance Rs = 0.013; % Stator resistance
Define the phase current vectors.
iA = linspace(-250,250,5); iB = iA; iC = iA;
Specify the rotor angle vector based on the number of pole pairs.
X = pi/180*linspace(0,360/N,180/N+1);
Tabulate flux linkage partial derivatives and torque in terms of A-,B-,C-currents and rotor angle
[F,T,dFdA,dFdB,dFdC,dFdX] = ee_generateIdealPMSMfluxData(PM,Ld,Lq,L0,iA,iB,iC,X);
The function returns a 4-D flux linkage matrix F, a 4-D torque matrix T, and four 4-D matrices for the flux linkage partial derivatives. The four partial derivative matrices correspond to the three phase currents and the rotor angle, respectively. The matrix dimensions correspond to the three phase currents and the rotor angle.
Generate 4-D Flux Linkage Matrix F
Specify the motor parameters.
PM = 0.1; % Permanent magnet flux N = 6; % Number of pole pairs Ld = 0.0002; % D-axis inductance Lq = 0.0002; % Q-axis inductance L0 = 0.00018; % Zero-sequence inductance Rs = 0.013; % Stator resistance
Define the phase current vectors.
iA = linspace(-250,250,5); iB = iA; iC = iA;
Specify the rotor angle vector based on the number of pole pairs.
X = pi/180*linspace(0,360/N,180/N+1);
Tabulate flux linkage partial derivatives and torque in terms of A-,B-,C-currents and rotor angle
F = ee_generateIdealPMSMfluxData(PM,Ld,Lq,L0,iA,iB,iC,X);
The function returns a 4-D flux linkage matrix F. The matrix dimensions correspond to the three phase currents and the rotor angle.
Generate 3-D Flux Linkage Data
Specify the motor parameters.
PM = 0.1; % Permanent magnet flux N = 6; % Number of pole pairs Ld = 0.0002; % D-axis inductance Lq = 0.0002; % Q-axis inductance L0 = 0.00018; % Zero-sequence inductance Rs = 0.013; % Stator resistance
Define the d-axis and q-axis current vectors.
iD = linspace(-250,250,5); iQ = iD;
Specify the rotor angle vector based on the number of pole pairs.
X = pi/180*linspace(0,360/N,180/N+1);
Tabulate flux linkage partial derivatives and torque in terms of d-axis and q-axis currents and rotor angle.
[F,T,dFdA,dFdB,dFdC,dFdX] = ee_generateIdealPMSMfluxData(PM,Ld,Lq,L0,iD,iQ,X);
The function returns a 3-D flux linkage matrix F, a 3-D torque matrix T, and four 3-D matrices for the flux linkage partial derivatives. The four partial derivative matrices correspond to the three phase currents and the rotor angle, respectively. The matrix dimensions correspond to the d-axis and q-axis currents and the rotor angle.
Generate 3-D Flux Linkage Matrix F
Specify the motor parameters.
PM = 0.1; % Permanent magnet flux N = 6; % Number of pole pairs Ld = 0.0002; % D-axis inductance Lq = 0.0002; % Q-axis inductance L0 = 0.00018; % Zero-sequence inductance Rs = 0.013; % Stator resistance
Define the d-axis and q-axis current vectors.
iD = linspace(-250,250,5); iQ = iD;
Specify the rotor angle vector based on the number of pole pairs.
X = pi/180*linspace(0,360/N,180/N+1);
Tabulate flux linkage partial derivatives and torque in terms of d-axis and q-axis currents and rotor angle.
F = ee_generateIdealPMSMfluxData(PM,Ld,Lq,L0,iD,iQ,X);
The function returns a 3-D flux linkage matrix F. The matrix dimensions correspond to the d-axis and q-axis currents and the rotor angle.
Input Arguments
Output Arguments
Algorithms
The flux linking each winding has contributions from the permanent magnet plus the three windings. Therefore, the total flux is given by [1]:
Here, Θe is the electrical angle, which is related to rotor angle Θr by Θe = N·Θr. The function assumes that the permanent magnet flux linking the A-phase winding is at the maximum for Θe = 0.
The function output F
corresponds to ψa tabulated
as a function of A-phase current, B-phase current, C-phase current,
and rotor angle.
Ls, Lm, and Ms are
related to input arguments Ld
, Lq
,
and L0
by:
References
[1] Anderson, P.M. Analysis of Faulted Power Systems. 1st Edition. Wiley-IEEE Press, July 1995, p.187.
Version History
Introduced in R2017a