addK
Evaluate additional numbers of clusters
Description
returns a clustering evaluation object updatedEvaluation
= addK(evaluation
,klist
)updatedEvaluation
, which
contains the evaluation data in the clustering evaluation object
evaluation
and additional evaluation data for the proposed number of
clusters specified in klist
.
Examples
Evaluate Additional Numbers of Clusters
Create a clustering evaluation object using evalclusters
, and then use addK
to evaluate additional numbers of clusters.
Load the fisheriris
data set. The data contains length and width measurements from the sepals and petals of three species of iris flowers.
load fisheriris
Cluster the flower measurement data using kmeans
, and use the Calinski-Harabasz criterion to evaluate proposed solutions for 1 to 5 clusters.
evaluation = evalclusters(meas,"kmeans","CalinskiHarabasz","KList",1:5)
evaluation = CalinskiHarabaszEvaluation with properties: NumObservations: 150 InspectedK: [1 2 3 4 5] CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279] OptimalK: 3
The clustering evaluation object evaluation
contains data on each proposed clustering solution. The returned value of OptimalK
indicates that the optimal solution is three clusters.
Evaluate proposed solutions for 6 to 10 clusters using the same criterion. Add these evaluations to the original clustering evaluation object.
evaluation = addK(evaluation,6:10)
evaluation = CalinskiHarabaszEvaluation with properties: NumObservations: 150 InspectedK: [1 2 3 4 5 6 7 8 9 10] CriterionValues: [NaN 513.9245 561.6278 530.4871 456.1279 469.5068 449.6410 435.8182 413.3837 386.5571] OptimalK: 3
The updated values for InspectedK
and CriterionValues
show that evaluation
now evaluates proposed solutions for 1 to 10 clusters. The OptimalK
value is still 3
, indicating that the optimal solution is still three clusters.
Input Arguments
evaluation
— Clustering evaluation data
CalinskiHarabaszEvaluation
object | DaviesBouldinEvaluation
object | GapEvaluation
object | SilhouetteEvaluation
object
Clustering evaluation data, specified as a CalinskiHarabaszEvaluation
, DaviesBouldinEvaluation
, GapEvaluation
, or SilhouetteEvaluation
clustering evaluation
object. Create a clustering evaluation object by using evalclusters
.
klist
— Additional number of clusters to evaluate
positive integer vector
Additional number of clusters to evaluate, specified as a positive integer vector.
If any values in klist
overlap with clustering solutions already
evaluated in the evaluation
object, then addK
ignores the overlapping values.
Data Types: single
| double
Output Arguments
updatedEvaluation
— Updated clustering evaluation data
CalinskiHarabaszEvaluation
object | DaviesBouldinEvaluation
object | GapEvaluation
object | SilhouetteEvaluation
object
Updated clustering evaluation data, returned as a CalinskiHarabaszEvaluation
, DaviesBouldinEvaluation
, GapEvaluation
, or SilhouetteEvaluation
clustering evaluation
object. updatedEvaluation
contains data on the proposed clustering
solutions included in evaluation
and data on the additional
proposed number of clusters specified in klist
.
For all clustering evaluation objects, addK
updates the
InspectedK
and CriterionValues
properties to
include the proposed clustering solutions specified in klist
and
their corresponding criterion values. If the software finds a new optimal number of
clusters and optimal clustering solution, then addK
also updates
the OptimalK
and OptimalY
properties.
For certain clustering evaluation objects, addK
updates these
additional property values:
LogW
,ExpectedLogW
,StdLogW
, andSE
(for gap criterion evaluation objects)ClusterSilhouettes
(for silhouette criterion evaluation objects)
Version History
Introduced in R2014a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)