fitglme
Fit generalized linear mixed-effects model
Description
returns
a generalized linear mixed-effects model using additional options
specified by one or more glme
= fitglme(tbl
,formula
,Name,Value
)Name,Value
pair arguments.
For example, you can specify the distribution of the response, the
link function, or the covariance pattern of the random-effects terms.
Examples
Fit a Generalized Linear Mixed-Effects Model
Load the sample data.
load mfr
This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
Flag to indicate whether the batch used the new process (
newprocess
)Processing time for each batch, in hours (
time
)Temperature of the batch, in degrees Celsius (
temp
)Categorical variable indicating the supplier of the chemical used in the batch (
supplier
)Number of defects in the batch (
defects
)
The data also includes time_dev
and temp_dev
, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.
Fit a generalized linear mixed-effects model using newprocess
, time_dev
, temp_dev
, and supplier
as fixed-effects predictors. Include a random-effects term for intercept grouped by factory
, to account for quality differences that might exist due to factory-specific variations. The response variable defects
has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects'
, so the dummy variable coefficients sum to 0.
The number of defects can be modeled using a Poisson distribution
This corresponds to the generalized linear mixed-effects model
where
is the number of defects observed in the batch produced by factory during batch .
is the mean number of defects corresponding to factory (where ) during batch (where ).
, , and are the measurements for each variable that correspond to factory during batch . For example, indicates whether the batch produced by factory during batch used the new process.
and are dummy variables that use effects (sum-to-zero) coding to indicate whether company
C
orB
, respectively, supplied the process chemicals for the batch produced by factory during batch .is a random-effects intercept for each factory that accounts for factory-specific variation in quality.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ... 'Distribution','Poisson','Link','log','FitMethod','Laplace', ... 'DummyVarCoding','effects');
Display the model.
disp(glme)
Generalized linear mixed-effects model fit by ML Model information: Number of observations 100 Fixed effects coefficients 6 Random effects coefficients 20 Covariance parameters 1 Distribution Poisson Link Log FitMethod Laplace Formula: defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory) Model fit statistics: AIC BIC LogLikelihood Deviance 416.35 434.58 -201.17 402.35 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15 1.1515 1.7864 {'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122 -0.72019 -0.015134 {'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941 -1.7395 1.5505 {'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907 -2.1926 1.6263 {'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936 -0.22679 0.083051 {'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078 -0.082588 0.22473 Random effects covariance parameters: Group: factory (20 Levels) Name1 Name2 Type Estimate {'(Intercept)'} {'(Intercept)'} {'std'} 0.31381 Group: Error Name Estimate {'sqrt(Dispersion)'} 1
The Model information
table displays the total number of observations in the sample data (100), the number of fixed- and random-effects coefficients (6 and 20, respectively), and the number of covariance parameters (1). It also indicates that the response variable has a Poisson
distribution, the link function is Log
, and the fit method is Laplace
.
Formula
indicates the model specification using Wilkinson’s notation.
The Model fit statistics
table displays statistics used to assess the goodness of fit of the model. This includes the Akaike information criterion (AIC
), Bayesian information criterion (BIC
) values, log likelihood (LogLikelihood
), and deviance (Deviance
) values.
The Fixed effects coefficients
table indicates that fitglme
returned 95% confidence intervals. It contains one row for each fixed-effects predictor, and each column contains statistics corresponding to that predictor. Column 1 (Name
) contains the name of each fixed-effects coefficient, column 2 (Estimate
) contains its estimated value, and column 3 (SE
) contains the standard error of the coefficient. Column 4 (tStat
) contains the -statistic for a hypothesis test that the coefficient is equal to 0. Column 5 (DF
) and column 6 (pValue
) contain the degrees of freedom and -value that correspond to the -statistic, respectively. The last two columns (Lower
and Upper
) display the lower and upper limits, respectively, of the 95% confidence interval for each fixed-effects coefficient.
Random effects covariance parameters
displays a table for each grouping variable (here, only factory
), including its total number of levels (20), and the type and estimate of the covariance parameter. Here, std
indicates that fitglme
returns the standard deviation of the random effect associated with the factory predictor, which has an estimated value of 0.31381. It also displays a table containing the error parameter type (here, the square root of the dispersion parameter), and its estimated value of 1.
The standard display generated by fitglme
does not provide confidence intervals for the random-effects parameters. To compute and display these values, use covarianceParameters
.
Fit Generalized Mixed-Effects Model to Binary Data
Load the carbig
sample data set.
load carbig
The variables Acceleration
, Model_Year
, and Cylinders
contain data for car acceleration, year of manufacture, and number of engine cylinders, respectively. The data was collected from cars built between 1970 and 1982.
Create a variable named CylinderCats
that indicates whether a car has more than four cylinders. Use the table
function to create a table from the data in Acceleration
, Model_Year
, and CylinderCats
.
CylinderCats = Cylinders>4; tbl = table(Acceleration,Model_Year,CylinderCats);
Fit a generalized mixed-effects model to the data, using CylinderCats
as the response variable and Model_Year
as a random effect. Specify the response data distribution as binomial.
glme = fitglme(tbl,"CylinderCats~Acceleration+(Acceleration|Model_Year)",Distribution="Binomial");
glme
is a GeneralizedLinearMixedModel
object that contains information about the fitted model.
Inspect the statistics for the fixed effect Acceleration
by using the fixedEffects
object function with the default 95% confidence level.
[~,~,statsFixed] = fixedEffects(glme)
statsFixed = FIXED EFFECT COEFFICIENTS: DFMETHOD = 'RESIDUAL', ALPHA = 0.05 Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 4.3838 1.2374 3.5428 404 0.00044213 1.9513 6.8163 {'Acceleration'} -0.29673 0.077896 -3.8093 404 0.00016104 -0.44986 -0.1436
The small p-value for the Acceleration
term indicates that car acceleration has a statistically significant effect on whether a car has more than four cylinders.
Inspect the statistics for the random effect Model_Year
by using the randomEffects
object function with the default 95% confidence level.
[~,~,statsRandom] = randomEffects(glme)
statsRandom = RANDOM EFFECT COEFFICIENTS: DFMETHOD = 'RESIDUAL', ALPHA = 0.05 Group Level Name Estimate SEPred tStat DF pValue Lower Upper {'Model_Year'} {'70'} {'(Intercept)' } 3.041 2.1322 1.4262 404 0.15457 -1.1506 7.2326 {'Model_Year'} {'70'} {'Acceleration'} -0.16836 0.13906 -1.2107 404 0.22672 -0.44173 0.10501 {'Model_Year'} {'71'} {'(Intercept)' } 3.4715 2.3452 1.4802 404 0.13959 -1.1389 8.0818 {'Model_Year'} {'71'} {'Acceleration'} -0.21721 0.15106 -1.4378 404 0.15125 -0.51418 0.079764 {'Model_Year'} {'72'} {'(Intercept)' } 4.2634 2.4382 1.7486 404 0.081124 -0.52977 9.0566 {'Model_Year'} {'72'} {'Acceleration'} -0.28827 0.15892 -1.8139 404 0.070435 -0.6007 0.024149 {'Model_Year'} {'73'} {'(Intercept)' } 3.7951 2.1976 1.7269 404 0.084949 -0.52512 8.1153 {'Model_Year'} {'73'} {'Acceleration'} -0.21079 0.14182 -1.4864 404 0.13796 -0.48958 0.067996 {'Model_Year'} {'74'} {'(Intercept)' } -0.77693 2.6678 -0.29123 404 0.77103 -6.0214 4.4675 {'Model_Year'} {'74'} {'Acceleration'} 0.056863 0.16571 0.34314 404 0.73167 -0.2689 0.38263 {'Model_Year'} {'75'} {'(Intercept)' } -3.2681 2.1531 -1.5178 404 0.12984 -7.5008 0.96463 {'Model_Year'} {'75'} {'Acceleration'} 0.24151 0.13346 1.8096 404 0.071093 -0.020847 0.50387 {'Model_Year'} {'76'} {'(Intercept)' } -0.28228 2.0922 -0.13492 404 0.89274 -4.3952 3.8306 {'Model_Year'} {'76'} {'Acceleration'} 0.045966 0.13069 0.35171 404 0.72524 -0.21096 0.30289 {'Model_Year'} {'77'} {'(Intercept)' } -0.78239 2.2806 -0.34305 404 0.73174 -5.2658 3.701 {'Model_Year'} {'77'} {'Acceleration'} 0.052519 0.14498 0.36226 404 0.71735 -0.23249 0.33752 {'Model_Year'} {'78'} {'(Intercept)' } -0.46307 2.2693 -0.20406 404 0.83841 -4.9242 3.9981 {'Model_Year'} {'78'} {'Acceleration'} 0.050014 0.14243 0.35114 404 0.72567 -0.22999 0.33002 {'Model_Year'} {'79'} {'(Intercept)' } -2.5181 2.0134 -1.2507 404 0.21178 -6.4762 1.44 {'Model_Year'} {'79'} {'Acceleration'} 0.19051 0.1257 1.5156 404 0.1304 -0.056591 0.43761 {'Model_Year'} {'80'} {'(Intercept)' } -2.6168 2.4053 -1.0879 404 0.27728 -7.3452 2.1117 {'Model_Year'} {'80'} {'Acceleration'} 0.10117 0.14903 0.67883 404 0.49763 -0.19181 0.39414 {'Model_Year'} {'81'} {'(Intercept)' } -1.8396 2.4268 -0.75801 404 0.44888 -6.6103 2.9312 {'Model_Year'} {'81'} {'Acceleration'} 0.08723 0.15145 0.57596 404 0.56497 -0.2105 0.38496 {'Model_Year'} {'82'} {'(Intercept)' } -2.0238 2.5531 -0.79267 404 0.42843 -7.0428 2.9953 {'Model_Year'} {'82'} {'Acceleration'} 0.058853 0.15948 0.36903 404 0.7123 -0.25467 0.37237
The large p-values in the table output indicate that not enough evidence exists to conclude that any of the random effect terms have a statistically significant effect on whether a car has more than four cylinders.
Input Arguments
tbl
— Input data
table | dataset array
Input data, which includes the response variable, predictor variables, and grouping variables,
specified as a table or dataset array. The predictor variables can be continuous or
grouping variables (see Grouping Variables). The response
variable must be numeric or logical. You must specify the model for the variables using
formula
.
formula
— Formula for model specification
character vector or string scalar of the form 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
Formula for model specification, specified as a character vector or string scalar of the form
'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'
. The
formula is case sensitive. For a full description, see Formula.
Example: 'y ~ treatment + (1|block)'
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects'
specifies
the response variable distribution as Poisson, the link function as
log, the fit method as Laplace, and dummy variable coding where the
coefficients sum to 0.
BinomialSize
— Number of trials for binomial distribution
1 (default) | scalar value | vector | variable name
Number of trials for binomial distribution, that is the sample
size, specified as the comma-separated pair consisting of a scalar
value, a vector of the same length as the response, or the name of
a variable in the input table. If you specify the name of a variable,
then the variable must be of the same length as the response. BinomialSize
applies
only when the Distribution
parameter is 'binomial'
.
If BinomialSize
is a scalar value, that means
all observations have the same number of trials.
Data Types: single
| double
CheckHessian
— Indicator to check positive definiteness of Hessian
false
(default) | true
Indicator to check the positive definiteness of the Hessian
of the objective function with respect to unconstrained parameters
at convergence, specified as the comma-separated pair consisting of 'CheckHessian'
and
either false
or true
. Default
is false
.
Specify 'CheckHessian'
as true
to
verify optimality of the solution or to determine if the model is
overparameterized in the number of covariance parameters.
If you specify 'FitMethod'
as 'MPL'
or 'REMPL'
,
then the covariance of the fixed effects and the covariance parameters
is based on the fitted linear mixed-effects model from the final pseudo
likelihood iteration.
Example: 'CheckHessian',true
CovarianceMethod
— Method to compute covariance of estimated parameters
'conditional'
(default) | 'JointHessian'
Method to compute covariance of estimated parameters, specified
as the comma-separated pair consisting of 'CovarianceMethod'
and
either 'conditional'
or 'JointHessian'
.
If you specify 'conditional'
, then fitglme
computes
a fast approximation to the covariance of fixed effects given the
estimated covariance parameters. It does not compute the covariance
of covariance parameters. If you specify 'JointHessian'
,
then fitglme
computes the joint covariance of
fixed effects and covariance parameters via the observed information
matrix using the Laplacian loglikelihood.
If you specify 'FitMethod'
as 'MPL'
or 'REMPL'
,
then the covariance of the fixed effects and the covariance parameters
is based on the fitted linear mixed-effects model from the final pseudo
likelihood iteration.
Example: 'CovarianceMethod','JointHessian'
CovariancePattern
— Pattern of covariance matrix
'FullCholesky'
| 'Isotropic'
| 'Full'
| 'Diagonal'
| 'CompSymm'
| square symmetric logical matrix | string array | cell array of character vectors or logical matrices
Pattern of the covariance matrix of the random effects, specified as the comma-separated pair
consisting of 'CovariancePattern'
and
'FullCholesky'
, 'Isotropic'
,
'Full'
, 'Diagonal'
,
'CompSymm'
, a square symmetric logical matrix, a string array, or
a cell array containing character vectors or logical matrices.
If there are R random-effects terms, then the value of
'CovariancePattern'
must be a string array or cell array of
length R, where each element r of the array
specifies the pattern of the covariance matrix of the random-effects vector associated
with the rth random-effects term. The options for each element
follow.
Value | Description |
---|---|
'FullCholesky' | Full covariance matrix using the Cholesky parameterization. fitglme estimates
all elements of the covariance matrix. |
'Isotropic' |
Diagonal covariance matrix with equal variances. That is, off-diagonal elements of the covariance matrix are constrained to be 0, and the diagonal elements are constrained to be equal. For example, if there are three random-effects terms with an isotropic covariance structure, this covariance matrix looks like where σ21 is the common variance of the random-effects terms. |
'Full' | Full covariance matrix, using the log-Cholesky parameterization. fitlme estimates
all elements of the covariance matrix. |
'Diagonal' |
Diagonal covariance matrix. That is, off-diagonal elements of the covariance matrix are constrained to be 0. |
'CompSymm' | Compound symmetry structure. That is, common variance along diagonals and equal correlation between all random effects. For example, if there are three random-effects terms with a covariance matrix having a compound symmetry structure, this covariance matrix looks like where σ2b1 is the common variance of the random-effects terms and σb1,b2 is the common covariance between any two random-effects term. |
PAT | Square symmetric logical matrix. If 'CovariancePattern' is
defined by the matrix PAT , and if PAT(a,b)
= false , then the (a,b) element of the
corresponding covariance matrix is constrained to be 0. |
For scalar random-effects terms, the default is 'Isotropic'
.
Otherwise, the default is 'FullCholesky'
.
Example: 'CovariancePattern','Diagonal'
Example: 'CovariancePattern',{'Full','Diagonal'}
Data Types: char
| string
| logical
| cell
DispersionFlag
— Indicator to compute dispersion parameter
false
for 'binomial'
and 'poisson'
distributions (default) | true
Indicator to compute dispersion parameter for 'binomial'
and 'poisson'
distributions,
specified as the comma-separated pair consisting of 'DispersionFlag'
and
one of the following.
Value | Description |
---|---|
true | Estimate a dispersion parameter when computing standard errors |
false | Use the theoretical value of 1.0 when computing
standard errors |
'DispersionFlag'
only applies if 'FitMethod'
is 'MPL'
or 'REMPL'
.
The fitting function always estimates the dispersion for other distributions.
Example: 'DispersionFlag',true
Distribution
— Distribution of the response variable
'Normal'
(default) | 'Binomial'
| 'Poisson'
| 'Gamma'
| 'InverseGaussian'
Distribution of the response variable, specified as the comma-separated
pair consisting of 'Distribution'
and one of the
following.
Value | Description |
---|---|
'Normal' | Normal distribution |
'Binomial' | Binomial distribution |
'Poisson' | Poisson distribution |
'Gamma' | Gamma distribution |
'InverseGaussian' | Inverse Gaussian distribution |
Example: 'Distribution','Binomial'
DummyVarCoding
— Coding to use for dummy variables
'reference'
(default) | 'effects'
| 'full'
Coding to use for dummy variables created from the categorical variables, specified as the
comma-separated pair consisting of 'DummyVarCoding'
and one of the
variables in this table.
Value | Description |
---|---|
'reference' (default) | fitglme creates dummy variables with a reference group. This scheme
treats the first category as a reference group and creates one less
dummy variables than the number of categories. You can check the
category order of a categorical variable by using the categories function,
and change the order by using the reordercats
function. |
'effects' | fitglme creates dummy variables using effects coding. This scheme
uses –1 to represent the last category. This scheme creates one less
dummy variables than the number of categories. |
'full' | fitglme creates full dummy variables. This scheme creates one dummy
variable for each category. |
For more details about creating dummy variables, see Automatic Creation of Dummy Variables.
Example: 'DummyVarCoding','effects'
EBMethod
— Method used to approximate empirical Bayes estimates of random effects
'Auto'
(default) | 'LineSearchNewton'
| 'TrustRegion2D'
| 'fsolve'
Method used to approximate empirical Bayes estimates of random
effects, specified as the comma-separated pair consisting of 'EBMethod'
and
one of the following.
'Auto'
'LineSearchNewton'
'TrustRegion2D'
'fsolve'
'Auto'
is similar to 'LineSearchNewton'
but
uses a different convergence criterion and does not display iterative
progress. 'Auto'
and 'LineSearchNewton'
may
fail for non-canonical link functions. For non-canonical link functions, 'TrustRegion2D'
or 'fsolve'
are
recommended. You must have Optimization Toolbox™ to use 'fsolve'
.
Example: 'EBMethod','LineSearchNewton'
EBOptions
— Options for empirical Bayes optimization
structure
Options for empirical Bayes optimization, specified as the comma-separated
pair consisting of 'EBOptions'
and a structure
containing the following.
Value | Description |
---|---|
'TolFun' | Relative tolerance on the gradient norm. Default is 1e-6. |
'TolX' | Absolute tolerance on the step size. Default is 1e-8. |
'MaxIter' | Maximum number of iterations. Default is 100. |
'Display' | 'off' , 'iter' , or 'final' .
Default is 'off' . |
If EBMethod
is 'Auto'
and 'FitMethod'
is 'Laplace'
, TolFun
is
the relative tolerance on the linear predictor of the model, and the 'Display'
option
does not apply.
If 'EBMethod'
is 'fsolve'
,
then 'EBOptions'
must be specified as an object
created by optimoptions('fsolve')
.
Data Types: struct
Exclude
— Indices for rows to exclude
use all rows without NaNs
(default) | vector of integer or logical values
Indices for rows to exclude from the generalized linear mixed-effects
model in the data, specified as the comma-separated pair consisting
of 'Exclude'
and a vector of integer or logical
values.
For example, you can exclude the 13th and 67th rows from the fit as follows.
Example: 'Exclude',[13,67]
Data Types: single
| double
| logical
FitMethod
— Method for estimating model parameters
'MPL'
(default) | 'REMPL'
| 'Laplace'
| 'ApproximateLaplace
Method for estimating model parameters, specified as the comma-separated
pair consisting of 'FitMethod'
and one of the following.
'MPL'
— Maximum pseudo likelihood'REMPL'
— Restricted maximum pseudo likelihood'Laplace'
— Maximum likelihood using Laplace approximation'ApproximateLaplace'
— Maximum likelihood using approximate Laplace approximation with fixed effects profiled out
Example: 'FitMethod','REMPL'
InitPLIterations
— Initial number of pseudo likelihood iterations
10 (default) | integer value in the range [1,∞)
Initial number of pseudo likelihood iterations used to initialize
parameters for ApproximateLaplace
and Laplace
fit
methods, specified as the comma-separated pair consisting of 'InitPLIterations'
and
an integer value greater than or equal to 1.
Data Types: single
| double
Link
— Link function
'identity'
| 'log'
| 'logit'
| 'probit'
| 'comploglog'
| 'reciprocal'
| scalar value | structure
Link function, specified as the comma-separated pair consisting
of 'Link'
and one of the following.
Value | Description |
---|---|
'identity' |
This is the default for the normal distribution. |
'log' |
This is the default for the Poisson distribution. |
'logit' |
This is the default for the binomial distribution. |
'loglog' | g(mu) = log(-log(mu)) |
'probit' | g(mu) = norminv(mu) |
'comploglog' | g(mu) = log(-log(1-mu)) |
'reciprocal' | g(mu) = mu.^(-1) |
Scalar value P | g(mu) = mu.^P |
Structure S | A structure containing four fields whose values are function handles with the following names:
Specification of |
The default link function used by fitglme
is
the canonical link that depends on the distribution of the response.
Response Distribution | Canonical Link Function |
---|---|
'Normal' | 'identity' |
'Binomial' | 'logit' |
'Poisson' | 'log' |
'Gamma' | -1 |
'InverseGaussian' | -2 |
Example: 'Link','log'
Data Types: char
| string
| single
| double
| struct
MuStart
— Starting values for conditional mean
n-by-1 numeric vector
Starting values for conditional mean, specified as an n-by-1
vector, where n
is the number of rows in
tbl
. Valid values are as follows.
Response Distribution | Valid Values |
---|---|
"Normal" | (-Inf,Inf) |
"Binomial" | (0,1) |
"Poisson" | (0,Inf) |
"Gamma" | (0,Inf) |
"InverseGaussian" | (0,Inf) |
Data Types: single
| double
Offset
— Offset
zeros(n,1)
(default) | n-by-1 vector of scalar values
Offset, specified as the comma-separated pair consisting of 'Offset'
and
an n-by-1 vector of scalar values, where n is
the length of the response vector. You can also specify the variable
name of an n-by-1 vector of scalar values. 'Offset'
is
used as an additional predictor that has a coefficient value fixed
at 1.0
.
Data Types: single
| double
Optimizer
— Optimization algorithm
'quasinewton'
(default) | 'fminsearch'
| 'fminunc'
Optimization algorithm, specified as the comma-separated pair
consisting of 'Optimizer'
and either of the following.
Value | Description |
---|---|
'quasinewton' | Uses a trust region based quasi-Newton optimizer. You can change
the options of the algorithm using statset('fitglme') .
If you do not specify the options, then fitglme uses
the default options of statset('fitglme') . |
'fminsearch' | Uses a derivative-free Nelder-Mead method. You can change the
options of the algorithm using optimset('fminsearch') .
If you do not specify the options, then fitglme uses
the default options of optimset('fminsearch') . |
'fminunc' | Uses a line search-based quasi-Newton method. You must have Optimization Toolbox to
specify this option. You can change the options of the algorithm using optimoptions('fminunc') .
If you do not specify the options, then fitglme uses
the default options of optimoptions('fminunc') with 'Algorithm' set
to 'quasi-newton' . |
Example: 'Optimizer','fminsearch'
OptimizerOptions
— Options for optimization algorithm
structure returned by statset
| structure returned by optimset
| object returned by optimoptions
Options for the optimization algorithm, specified as the comma-separated
pair consisting of 'OptimizerOptions'
and a structure
returned by statset('fitglme')
, a structure created
by optimset('fminsearch')
, or an object returned
by optimoptions('fminunc')
.
If
'Optimizer'
is'fminsearch'
, then useoptimset('fminsearch')
to change the options of the algorithm. If'Optimizer'
is'fminsearch'
and you do not supply'OptimizerOptions'
, then the defaults used infitglme
are the default options created byoptimset('fminsearch')
.If
'Optimizer'
is'fminunc'
, then useoptimoptions('fminunc')
to change the options of the optimization algorithm. Seeoptimoptions
for the options'fminunc'
uses. If'Optimizer'
is'fminunc'
and you do not supply'OptimizerOptions'
, then the defaults used infitglme
are the default options created byoptimoptions('fminunc')
with'Algorithm'
set to'quasi-newton'
.If
'Optimizer'
is'quasinewton'
, then usestatset('fitglme')
to change the optimization parameters. If'Optimizer'
is'quasinewton'
and you do not change the optimization parameters usingstatset
, thenfitglme
uses the default options created bystatset('fitglme')
.
The 'quasinewton'
optimizer uses the following
fields in the structure created by statset('fitglme')
.
TolFun
— Relative tolerance on gradient of objective function
1e-6
(default) | positive scalar value
Relative tolerance on the gradient of the objective function, specified as a positive scalar value.
TolX
— Absolute tolerance on step size
1e-12
(default) | positive scalar value
Absolute tolerance on the step size, specified as a positive scalar value.
MaxIter
— Maximum number of iterations allowed
10000
(default) | positive scalar value
Maximum number of iterations allowed, specified as a positive scalar value.
Display
— Level of display
'off'
(default) | 'iter'
| 'final'
Level of display, specified as one of 'off'
, 'iter'
,
or 'final'
.
PLIterations
— Maximum number of pseudo likelihood iterations
100
(default) | positive integer value
Maximum number of pseudo likelihood (PL) iterations, specified
as the comma-separated pair consisting of 'PLIterations'
and
a positive integer value. PL is used for fitting the model if 'FitMethod'
is 'MPL'
or 'REMPL'
.
For other 'FitMethod'
values, PL iterations are
used to initialize parameters for subsequent optimization.
Example: 'PLIterations',200
Data Types: single
| double
PLTolerance
— Relative tolerance factor for pseudo likelihood iterations
1e–08
(default) | positive scalar value
Relative tolerance factor for pseudo likelihood iterations,
specified as the comma-separated pair consisting of 'PLTolerance'
and
a positive scalar value.
Example: 'PLTolerance',1e-06
Data Types: single
| double
StartMethod
— Method to start iterative optimization
'default'
(default) | 'random'
Method to start iterative optimization, specified as the comma-separated
pair consisting of 'StartMethod'
and either of
the following.
Value | Description |
---|---|
'default' | An internally defined default value |
'random' | A random initial value |
Example: 'StartMethod','random'
UseSequentialFitting
— Initial fitting type
false
(default) | true
, specified as the comma-separated pair consisting of 'UseSequentialFitting'
and
either false
or true
. If 'UseSequentialFitting'
is false
,
all maximum likelihood methods are initialized using one or more pseudo
likelihood iterations. If 'UseSequentialFitting'
is true
,
the initial values from pseudo likelihood iterations are refined using 'ApproximateLaplace'
for 'Laplace'
fitting.
Example: 'UseSequentialFitting',true
Verbose
— Indicator to display optimization process on screen
0
(default) | 1
| 2
Indicator to display the optimization process on screen, specified
as the comma-separated pair consisting of 'Verbose'
and 0
, 1
,
or 2
. If 'Verbose'
is specified
as 1
or 2
, then fitglme
displays
the progress of the iterative model-fitting process. Specifying 'Verbose'
as 2
displays
iterative optimization information from the individual pseudo likelihood
iterations. Specifying 'Verbose'
as 1
omits
this display.
The setting for 'Verbose'
overrides the field 'Display'
in 'OptimizerOptions'
.
Example: 'Verbose',1
Weights
— Observation weights
vector of nonnegative scalar values
Observation weights, specified as the comma-separated pair consisting
of 'Weights'
and an n-by-1 vector
of nonnegative scalar values, where n is the number
of observations. If the response distribution is binomial or Poisson,
then 'Weights'
must be a vector of positive integers.
Data Types: single
| double
Output Arguments
glme
— Generalized linear mixed-effects model
GeneralizedLinearMixedModel
object
Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object.
For properties and methods of this object, see GeneralizedLinearMixedModel
.
More About
Formula
In general, a formula for model specification is a character vector or string
scalar of the form 'y ~ terms'
. For the generalized linear mixed-effects
models, this formula is in the form 'y ~ fixed + (random1|grouping1) + ... +
(randomR|groupingR)'
, where fixed
and
random
contain the fixed-effects and the random-effects terms.
Suppose a table tbl
contains the following:
A response variable,
y
Predictor variables,
Xj
, which can be continuous or grouping variablesGrouping variables,
g1
,g2
, ...,gR
,
where the grouping variables in
Xj
and
gr
can be categorical,
logical, character arrays, string arrays, or cell arrays of character vectors.
Then, in a formula of the form, 'y ~ fixed + (random1|g1)
+ ... + (randomR|gR)'
,
the term fixed
corresponds to a specification of
the fixed-effects design matrix X
, random
1 is
a specification of the random-effects design matrix Z
1 corresponding
to grouping variable g
1,
and similarly random
R is
a specification of the random-effects design matrix Z
R corresponding
to grouping variable g
R.
You can express the fixed
and random
terms
using Wilkinson notation.
Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
Wilkinson Notation | Factors in Standard Notation |
---|---|
1 | Constant (intercept) term |
X^k , where k is a positive
integer | X , X2 ,
..., Xk |
X1 + X2 | X1 , X2 |
X1*X2 | X1 , X2 , X1.*X2
(elementwise multiplication of X1 and X2) |
X1:X2 | X1.*X2 only |
- X2 | Do not include X2 |
X1*X2 + X3 | X1 , X2 , X3 , X1*X2 |
X1 + X2 + X3 + X1:X2 | X1 , X2 , X3 , X1*X2 |
X1*X2*X3 - X1:X2:X3 | X1 , X2 , X3 , X1*X2 , X1*X3 , X2*X3 |
X1*(X2 + X3) | X1 , X2 , X3 , X1*X2 , X1*X3 |
Statistics and Machine Learning Toolbox™ notation always includes a constant term
unless you explicitly remove the term using -1
.
Here are some examples for generalized linear mixed-effects model
specification.
Examples:
Formula | Description |
---|---|
'y ~ X1 + X2' | Fixed effects for the intercept, X1 and X2 .
This is equivalent to 'y ~ 1 + X1 + X2' . |
'y ~ -1 + X1 + X2' | No intercept and fixed effects for X1 and X2 .
The implicit intercept term is suppressed by including -1 . |
'y ~ 1 + (1 | g1)' | Fixed effects for the intercept plus random effect for the
intercept for each level of the grouping variable g1 . |
'y ~ X1 + (1 | g1)' | Random intercept model with a fixed slope. |
'y ~ X1 + (X1 | g1)' | Random intercept and slope, with possible correlation between
them. This is equivalent to 'y ~ 1 + X1 + (1 + X1|g1)' . |
'y ~ X1 + (1 | g1) + (-1 + X1 | g1)' | Independent random effects terms for intercept and slope. |
'y ~ 1 + (1 | g1) + (1 | g2) + (1 | g1:g2)' | Random intercept model with independent main effects for g1 and g2 ,
plus an independent interaction effect. |
Version History
Introduced in R2014b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)