Load the sample data.
This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
Flag to indicate whether the batch used the new process (newprocess)
Processing time for each batch, in hours (time)
Temperature of the batch, in degrees Celsius (temp)
Categorical variable indicating the supplier (A, B, or C) of the chemical used in the batch (supplier)
Number of defects in the batch (defects)
The data also includes time_dev and temp_dev, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.
Fit a generalized linear mixed-effects model using newprocess, time_dev, temp_dev, and supplier as fixed-effects predictors. Include a random-effects term for intercept grouped by factory, to account for quality differences that might exist due to factory-specific variations. The response variable defects has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects', so the dummy variable coefficients sum to 0.
The number of defects can be modeled using a Poisson distribution
This corresponds to the generalized linear mixed-effects model
where
is the number of defects observed in the batch produced by factory during batch .
is the mean number of defects corresponding to factory (where ) during batch (where ).
, , and are the measurements for each variable that correspond to factory during batch . For example, indicates whether the batch produced by factory during batch used the new process.
and are dummy variables that use effects (sum-to-zero) coding to indicate whether company C or B, respectively, supplied the process chemicals for the batch produced by factory during batch .
is a random-effects intercept for each factory that accounts for factory-specific variation in quality.
Compute and display the estimated fixed-effects coefficient values and related statistics.
stats =
Fixed effect coefficients: DFMethod = 'residual', Alpha = 0.05
Name Estimate SE tStat DF pValue Lower Upper
{'(Intercept)'} 1.4689 0.15988 9.1875 94 9.8194e-15 1.1515 1.7864
{'newprocess' } -0.36766 0.17755 -2.0708 94 0.041122 -0.72019 -0.015134
{'time_dev' } -0.094521 0.82849 -0.11409 94 0.90941 -1.7395 1.5505
{'temp_dev' } -0.28317 0.9617 -0.29444 94 0.76907 -2.1926 1.6263
{'supplier_C' } -0.071868 0.078024 -0.9211 94 0.35936 -0.22679 0.083051
{'supplier_B' } 0.071072 0.07739 0.91836 94 0.36078 -0.082588 0.22473
The returned results indicate, for example, that the estimated coefficient for temp_dev is –0.28317. Its large -value, 0.76907, indicates that it is not a statistically significant predictor at the 5% significance level. Additionally, the confidence interval boundaries Lower and Upper indicate that the 95% confidence interval for the coefficient for temp_dev is [-2.1926 , 1.6263]. This interval contains 0, which supports the conclusion that temp_dev is not statistically significant at the 5% significance level.