本页对应的英文页面已更新,但尚未翻译。 若要查看最新内容,请点击此处访问英文页面。

Statistics and Machine Learning Toolbox 快速入门

使用统计信息和机器学习来分析数据并为数据建模

Statistics and Machine Learning Toolbox™ 提供了用于描述数据、分析数据以及为数据建模的函数和 App。您可以使用描述性统计量和绘图进行探索性数据分析,对数据进行概率分布拟合,生成进行蒙特卡罗仿真的随机数,以及执行假设检验。回归算法和分类算法允许您从数据做出推断并构建预测模型。

对于多维数据分析,Statistics and Machine Learning Toolbox 提供了特征选择、逐步回归、主成分分析 (PCA)、正则化以及其他降维方法,让您能够识别影响模型的变量或特征。

此工具箱提供有监督和无监督的机器学习算法,包括支持向量机 (SVM)、提升决策树和装袋决策树、k 最近邻、k 均值、k 中心点、层次聚类、高斯混合模型以及隐马尔可夫模型。可以使用许多统计算法和机器学习算法来计算因为太大而无法存储在内存中的大型数据集。

教程

相关信息