Statistics and Machine Learning Toolbox 快速入门
Statistics and Machine Learning Toolbox™ 提供了用于描述数据、分析数据以及为数据建模的函数和 App。您可以使用描述性统计量、可视化和聚类进行探索性数据分析,对数据进行概率分布拟合,生成进行蒙特卡罗模拟的随机数,以及执行假设检验。回归和分类算法允许您使用分类和回归学习器以交互方式,或使用 AutoML 以编程方式从数据做出推断并构建预测模型。
对于多维数据分析和特征提取,工具箱提供主成分分析 (PCA)、正则化、降维和特征选择方法,使您能够识别具有最佳预测能力的变量。
工具箱提供有监督、半监督和无监督的机器学习算法,包括支持向量机 (SVM)、提升决策树、k-均值和其他聚类方法。您可以应用部分依赖图和 LIME 等可解释性方法,并自动生成 C/C++ 代码用于嵌入式部署。许多工具箱算法可用于太大而无法放入内存的数据集。
教程
- Machine Learning in MATLAB
Discover machine learning capabilities in MATLAB® for classification, regression, clustering, and deep learning, including apps for automated model training and code generation.
- Train Classification Models in Classification Learner App
Workflow for training, comparing and improving classification models, including automated, manual, and parallel training.
- Train Regression Models in Regression Learner App
Workflow for training, comparing and improving regression models, including automated, manual, and parallel training.
- Distribution Plots
Visually compare the empirical distribution of sample data with a specified distribution.
- Explore the Random Number Generation UI
Generate random samples from specified probability distributions, and displays display the samples as histograms.
- Supervised Learning Workflow and Algorithms
Understand the steps for supervised learning and the characteristics of nonparametric classification and regression functions.
- Design of Experiments
Address statistical modeling problems with active data collection.