Main Content

统计和机器学习应用

将统计和机器学习方法应用于行业特定的工作流

Statistics and Machine Learning Toolbox™ 提供用于描述数据、分析数据以及为数据建模的工具。将这些工具与其他 MATLAB® 工具箱结合使用可执行行业特定的工作流。一些应用领域包括:

  • 航空航天 - 探查雷达和其他信号,检测异常,并构建预测模型。

  • 生物技术和制药 - 分析临床数据,并为药物发现和研发进行建模和仿真。

  • 通信和信号处理 - 对音频和其他信号进行分类,并对无线设备和集成电路进行建模。

  • 能源生产 - 预测能源要求,监控生产设备,并优化石油和天然气中化学品的处理。

  • 工业自动化和机械 - 将多元统计和预测建模应用于工业过程数据,监控制造过程和产品质量,并提高利用率和产量。

  • 医疗设备 - 基于生物医学时间序列和影像数据构建可解释的机器学习算法,用于开发应用程序,同时符合法规标准。

  • 量化金融和风险管理 - 针对算法交易、资产配置、信用风险和欺诈检测来训练、比较和优化模型。

航空航天

Radar Target Classification Using Machine Learning and Deep Learning (Radar Toolbox)

Classify radar returns using machine and deep learning approaches. (自 R2021a 起)

生物技术与制药

高通量测序

药物发现和定量系统药理学

通信和信号处理

Data Analysis on S-Parameters of RF Data Files (RF Toolbox)

Perform statistical analysis on S-parameter data files using magnitude, mean, and standard deviation.

Wavelet Time Scattering with GPU Acceleration — Spoken Digit Recognition (Wavelet Toolbox)

Extract features on your GPU for signal classification.

Feature Selection for Audio Classification (Audio Toolbox)

Perform audio feature selection to select a feature set for either speaker recognition or word recognition tasks.

Speaker Identification Using Pitch and MFCC (Audio Toolbox)

Use machine learning to identify people based on features extracted from recorded speech.

Speaker Diarization Using x-vectors (Audio Toolbox)

Speaker diarization is the process of partitioning an audio signal into segments according to speaker identity.

Accelerate Audio Machine Learning Workflows Using a GPU (Audio Toolbox)

This example shows how to use GPU computing to accelerate machine learning workflows for audio, speech, and acoustic applications. (自 R2024a 起)

Generate Synthetic Signals Using Conditional GAN (Signal Processing Toolbox)

Use a conditional generative adversarial network to produce synthetic signals.

Human Activity Recognition Using Signal Feature Extraction and Machine Learning (Signal Processing Toolbox)

Extract features from smartphone sensor signals and use them to classify human activity.

能源生产

资产管理的预测分析

  • Wind Turbine High-Speed Bearing Prognosis (Predictive Maintenance Toolbox)
    Build an exponential degradation model to predict the Remaining Useful Life (RUL) of a wind turbine bearing in real time. The exponential degradation model predicts the RUL based on its parameter priors and the latest measurements.

能源交易和风险管理 (ETRM)

工业自动化和机械

Fault Detection Using Data Based Models (Predictive Maintenance Toolbox)

Use a data-based modeling approach for fault detection.

Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data (Predictive Maintenance Toolbox)

Detect anomalies in industrial-machine vibration data using machine learning and deep learning.

Build Condition Model for Industrial Machinery and Manufacturing Processes

Train a binary classification model using Classification Learner App to detect anomalies in sensor data collected from an industrial manufacturing machine.

Rolling Element Bearing Fault Diagnosis (Predictive Maintenance Toolbox)

Perform fault diagnosis of a rolling element bearing based on acceleration signals.

Fault Diagnosis of Centrifugal Pumps Using Residual Analysis (Predictive Maintenance Toolbox)

Use a model parity-equations-based approach for detection and diagnosis of faults in a pumping system.

Air Compressor Fault Detection Using Wavelet Scattering (Wavelet Toolbox)

Classify faults in acoustic recordings of air compressors using a wavelet scattering network and a support vector machine. (自 R2021b 起)

Predict Battery State of Charge Using Machine Learning

Train a Gaussian process regression model to predict the state of charge of a battery in automotive engineering.

Deploy Neural Network Regression Model to FPGA/ASIC Platform

Predict in Simulink® using a neural network regression model, and deploy the Simulink model to an FPGA/ASIC platform by using HDL code generation.

Monitor Equipment State of Health Using Drift-Aware Learning

This example shows how to automate the process of monitoring the state of health for a cooling system using an incremental drift-aware learning model and Streaming Data Framework for MATLAB® Production Server™.

在云上使用漂移感知学习监控设备的健康状态

此示例描述在云上运行Monitor Equipment State of Health Using Drift-Aware Learning示例的部署版本所需的设置。本主题说明如何使用下图中的基础架构,使用增量漂移感知学习模型来自动化监控冷却系统健康状况的过程。此示例需要 Statistics and Machine Learning Toolbox™、MATLAB® Compiler SDK™、MATLAB Production Server™ 和 MATLAB Web App Server™。

医疗设备

Wavelet Time Scattering for ECG Signal Classification (Wavelet Toolbox)

Classify human electrocardiogram signals using wavelet time scattering and a support vector machine classifier.

Wavelet Time Scattering Classification of Phonocardiogram Data (Wavelet Toolbox)

Classify human phonocardiogram recordings using wavelet time scattering and a support vector machine classifier.

Human Activity Recognition Simulink Model for Smartphone Deployment

Generate code from a classification Simulink model prepared for deployment to a smartphone.

Human Activity Recognition Simulink Model for Fixed-Point Deployment

Generate code from a classification Simulink model prepared for fixed-point deployment.

量化金融和风险管理

算法交易

信用风险

投资组合优化和资产配置

计量经济学建模

精选示例