asin
Symbolic inverse sine function
Syntax
Description
asin(
returns the inverse sine function (arcsine
function) of X
)X
. All angles are in radians.
For real values of
X
in the interval[-1,1]
,asin(X)
returns the values in the interval[-pi/2,pi/2]
.For real values of
X
outside the interval[-1,1]
and for complex values ofX
,asin(X)
returns complex values with the real parts in the interval[-pi/2,pi/2]
.
Examples
Inverse Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, asin
returns
floating-point or exact symbolic results.
Compute the inverse sine function for these numbers. Because
these numbers are not symbolic objects, asin
returns
floating-point results.
A = asin([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])
A = -1.5708 -0.3398 -0.5236 0.2527 0.5236 1.0472 1.5708
Compute the inverse sine function for the numbers converted
to symbolic objects. For many symbolic (exact) numbers, asin
returns
unresolved symbolic calls.
symA = asin(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))
symA = [ -pi/2, -asin(1/3), -pi/6, asin(1/4), pi/6, pi/3, pi/2]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -1.5707963267948966192313216916398,... -0.33983690945412193709639251339176,... -0.52359877559829887307710723054658,... 0.25268025514207865348565743699371,... 0.52359877559829887307710723054658,... 1.0471975511965977461542144610932,... 1.5707963267948966192313216916398]
Plot Inverse Sine Function
Plot the inverse sine function on the interval from -1 to 1.
syms x fplot(asin(x),[-1 1]) grid on
Handle Expressions Containing Inverse Sine Function
Many functions, such as diff
, int
, taylor
,
and rewrite
, can handle expressions containing asin
.
Find the first and second derivatives of the inverse sine function:
syms x diff(asin(x), x) diff(asin(x), x, x)
ans = 1/(1 - x^2)^(1/2) ans = x/(1 - x^2)^(3/2)
Find the indefinite integral of the inverse sine function:
int(asin(x), x)
ans = x*asin(x) + (1 - x^2)^(1/2)
Find the Taylor series expansion of asin(x)
:
taylor(asin(x), x)
ans = (3*x^5)/40 + x^3/6 + x
Rewrite the inverse sine function in terms of the natural logarithm:
rewrite(asin(x), 'log')
ans = -log((1 - x^2)^(1/2) + x*1i)*1i
Input Arguments
Version History
Introduced before R2006a