asec
Symbolic inverse secant function
Syntax
Description
asec(
returns the inverse secant function
(arcsecant function) of X
)X
. All angles are in radians.
For real elements of
X
in the interval[-Inf,-1]
and[1,Inf]
,asec
returns values in the interval[0,pi]
.For real values of
X
in the interval[-1,1]
and for complex values ofX
,asec
returns complex values with the real parts in the interval[0,pi]
.
Examples
Inverse Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, asec
returns
floating-point or exact symbolic results.
Compute the inverse secant function for these numbers. Because these numbers are not
symbolic objects, asec
returns floating-point results.
A = asec([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A = 2.0944 + 0.0000i 0.0000 + Infi 0.5236 + 0.0000i... 0.0000 + 1.3170i 0.0000 + 0.0000i 1.3694 + 0.0000i
Compute the inverse secant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, asec
returns unresolved symbolic
calls.
symA = asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))
symA = [ (2*pi)/3, Inf, pi/6, acos(2), 0, acos(1/5)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 2.0943951023931954923084289221863,... Inf,... 0.52359877559829887307710723054658,... 1.3169578969248165734029498707969i,... 0,... 1.3694384060045659001758622252964]
Plot Inverse Secant Function
Plot the inverse secant function on the interval from -10 to 10.
syms x fplot(asec(x),[-10 10]) grid on
Handle Expressions Containing Inverse Secant Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
asec
.
Find the first and second derivatives of the inverse secant function:
syms x diff(asec(x), x) diff(asec(x), x, x)
ans = 1/(x^2*(1 - 1/x^2)^(1/2)) ans = - 2/(x^3*(1 - 1/x^2)^(1/2)) - 1/(x^5*(1 - 1/x^2)^(3/2))
Find the indefinite integral of the inverse secant function:
int(asec(x), x)
ans = x*acos(1/x) - log(x + (x^2 - 1)^(1/2))*sign(x)
Find the Taylor series expansion of asec(x)
around x =
Inf
:
taylor(asec(x), x, Inf)
ans = pi/2 - 1/x - 1/(6*x^3) - 3/(40*x^5)
Rewrite the inverse secant function in terms of the natural logarithm:
rewrite(asec(x), 'log')
ans = -log(1/x + (1 - 1/x^2)^(1/2)*1i)*1i
Input Arguments
Version History
Introduced before R2006a