tan
Symbolic tangent function
Syntax
Description
tan(
returns the tangent function of
X
)X
.
Examples
Tangent Function for Numeric and Symbolic Arguments
Depending on its arguments, tan
returns
floating-point or exact symbolic results.
Compute the tangent function for these numbers. Because these numbers are not
symbolic objects, tan
returns floating-point results.
A = tan([-2, -pi, pi/6, 5*pi/7, 11])
A = 2.1850 0.0000 0.5774 -1.2540 -225.9508
Compute the tangent function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, tan
returns unresolved symbolic
calls.
symA = tan(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA = [ -tan(2), 0, 3^(1/2)/3, -tan((2*pi)/7), tan(11)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 2.1850398632615189916433061023137,... 0,... 0.57735026918962576450914878050196,... -1.2539603376627038375709109783365,... -225.95084645419514202579548320345]
Plot Tangent Function
Plot the tangent function on the interval from to .
syms x fplot(tan(x),[-pi pi]) grid on
Handle Expressions Containing Tangent Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
tan
.
Find the first and second derivatives of the tangent function:
syms x diff(tan(x), x) diff(tan(x), x, x)
ans = tan(x)^2 + 1 ans = 2*tan(x)*(tan(x)^2 + 1)
Find the indefinite integral of the tangent function:
int(tan(x), x)
ans = -log(cos(x))
Find the Taylor series expansion of tan(x)
:
taylor(tan(x), x)
ans = (2*x^5)/15 + x^3/3 + x
Rewrite the tangent function in terms of the sine and cosine functions:
rewrite(tan(x), 'sincos')
ans = sin(x)/cos(x)
Rewrite the tangent function in terms of the exponential function:
rewrite(tan(x), 'exp')
ans = -(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)
Evaluate Units with tan
Function
tan
numerically evaluates these units
automatically: radian
, degree
,
arcmin
, arcsec
, and
revolution
.
Show this behavior by finding the tangent of x
degrees
and 2
radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; tanf = tan(f)
tanf = [ tan((pi*x)/180), tan(2)]
You can calculate tanf
by substituting for
x
using subs
and then using
double
or vpa
.