smithForm
Smith form of matrix
Description
returns
the Smith normal
form of a square invertible matrix S
= smithForm(A
)A
.
The elements of A
must be integers or polynomials
in a variable determined by symvar(A,1)
. The Smith
form S
is a diagonal matrix.
___ = smithForm(
assumes
that the elements of A
,var
)A
are univariate polynomials
in the specified variable var
. If A
contains
other variables, smithForm
treats those variables
as symbolic parameters.
You can use the input argument var
in any
of the previous syntaxes.
If A
does not contain var
,
then smithForm(A)
and smithForm(A,var)
return
different results.
Examples
Smith Form for Matrix of Integers
Find the Smith form of an inverse Hilbert matrix.
A = sym(invhilb(5)) S = smithForm(A)
A = [ 25, -300, 1050, -1400, 630] [ -300, 4800, -18900, 26880, -12600] [ 1050, -18900, 79380, -117600, 56700] [ -1400, 26880, -117600, 179200, -88200] [ 630, -12600, 56700, -88200, 44100] S = [ 5, 0, 0, 0, 0] [ 0, 60, 0, 0, 0] [ 0, 0, 420, 0, 0] [ 0, 0, 0, 840, 0] [ 0, 0, 0, 0, 2520]
Smith Form for Matrix of Univariate Polynomials
Create a 2-by-2 matrix, the elements of which
are polynomials in the variable x
.
syms x A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]
A = [ x^2 + 3, (2*x - 1)^2] [ (x + 2)^2, 3*x^2 + 5]
Find the Smith form of this matrix.
S = smithForm(A)
S = [ 1, 0] [ 0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]
Smith Form for Matrix of Multivariate Polynomials
Create a 2-by-2 matrix containing two variables: x
and y
.
syms x y A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]
A = [ y + 2/x, x^2 - y^2] [ y + 3*sin(x), x]
Find the Smith form of this matrix. If you do not specify the
polynomial variable, smithForm
uses symvar(A,1)
and
thus determines that the polynomial variable is x
.
Because 3*sin(x) + y
is not a polynomial in x
, smithForm
throws
an error.
S = smithForm(A)
Error using mupadengine/feval (line 163) Cannot convert the matrix entries to integers or univariate polynomials.
Find the Smith form of A
specifying that
all elements of A
are polynomials in the variable y
.
S = smithForm(A,y)
S = [ 1, 0] [ 0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]
Smith Form and Transformation Matrices
Find the Smith form and transformation matrices for an inverse Hilbert matrix.
A = sym(invhilb(3)); [U,V,S] = smithForm(A)
U = [ 1, 1, 1] [ -4, -1, 0] [ 10, 5, 3] V = [ 1, -2, 0] [ 0, 1, 5] [ 0, 1, 4] S = [ 3, 0, 0] [ 0, 12, 0] [ 0, 0, 60]
Verify that S = U*A*V
.
isAlways(S == U*A*V)
ans = 3×3 logical array 1 1 1 1 1 1 1 1 1
Find the Smith form and transformation matrices for a matrix of polynomials.
syms x y A = [2*(x - y), 3*(x^2 - y^2); 4*(x^3 - y^3), 5*(x^4 - y^4)]; [U,V,S] = smithForm(A,x)
U = [ 0, 1] [ 1, - x/(10*y^3) - 3/(5*y^2)] V = [ -x/(4*y^3), - (5*x*y^2)/2 - (5*x^2*y)/2 - (5*x^3)/2 - (5*y^3)/2] [ 1/(5*y^3), 2*x^2 + 2*x*y + 2*y^2] S = [ x - y, 0] [ 0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]
Verify that S = U*A*V
.
isAlways(S == U*A*V)
ans = 2×2 logical array 1 1 1 1
If You Specify Variable for Integer Matrix
If a matrix does not contain a particular variable, and you
call smithForm
specifying that variable
as the second argument, then the result differs from what you get
without specifying that variable. For example, create a matrix that
does not contain any variables.
A = [9 -36 30; -36 192 -180; 30 -180 180]
A = 9 -36 30 -36 192 -180 30 -180 180
Call smithForm
specifying variable x
as
the second argument. In this case, smithForm
assumes
that the elements of A
are univariate
polynomials in x
.
syms x smithForm(A,x)
ans = 1 0 0 0 1 0 0 0 1
Call smithForm
without specifying
variables. In this case, smithForm
treats A
as
a matrix of integers.
smithForm(A)
ans = 3 0 0 0 12 0 0 0 60
Input Arguments
Output Arguments
More About
Version History
Introduced in R2015b