bernoulli
Bernoulli numbers and polynomials
Description
bernoulli(
returns the
n
)n
th Bernoulli number.
bernoulli(
returns the n
,x
)n
th Bernoulli polynomial.
Examples
Bernoulli Numbers with Odd and Even Indices
The 0th Bernoulli number is 1
. The next
Bernoulli number can be -1/2
or 1/2
,
depending on the definition. The bernoulli
function uses
-1/2
. The Bernoulli numbers with even indices n
> 1
alternate the signs. Any Bernoulli number with an odd index
n > 2
is 0
.
Compute the even-indexed Bernoulli numbers with the indices from
0
to 10
. Because these indices are not
symbolic objects, bernoulli
returns floating-point
results.
bernoulli(0:2:10)
ans = 1.0000 0.1667 -0.0333 0.0238 -0.0333 0.0758
Compute the same Bernoulli numbers for the indices converted to symbolic objects:
bernoulli(sym(0:2:10))
ans = [ 1, 1/6, -1/30, 1/42, -1/30, 5/66]
Compute the odd-indexed Bernoulli numbers with the indices from
1
to 11
:
bernoulli(sym(1:2:11))
ans = [ -1/2, 0, 0, 0, 0, 0]
Bernoulli Polynomials
For the Bernoulli polynomials, use
bernoulli
with two input arguments.
Compute the first, second, and third Bernoulli polynomials in variables
x
, y
, and z
,
respectively:
syms x y z bernoulli(1, x) bernoulli(2, y) bernoulli(3, z)
ans = x - 1/2 ans = y^2 - y + 1/6 ans = z^3 - (3*z^2)/2 + z/2
If the second argument is a number, bernoulli
evaluates the
polynomial at that number. Here, the result is a floating-point number because the
input arguments are not symbolic numbers:
bernoulli(2, 1/3)
ans = -0.0556
To get the exact symbolic result, convert at least one of the numbers to a symbolic object:
bernoulli(2, sym(1/3))
ans = -1/18
Plot Bernoulli Polynomials
Plot the first six Bernoulli polynomials.
syms x fplot(bernoulli(0:5, x), [-0.8 1.8]) title('Bernoulli Polynomials') grid on
Handle Expressions Containing Bernoulli Polynomials
Many functions, such as diff
and
expand
, handles expressions containing
bernoulli
.
Find the first and second derivatives of the Bernoulli polynomial:
syms n x diff(bernoulli(n,x^2), x)
ans = 2*n*x*bernoulli(n - 1, x^2)
diff(bernoulli(n,x^2), x, x)
ans = 2*n*bernoulli(n - 1, x^2) +... 4*n*x^2*bernoulli(n - 2, x^2)*(n - 1)
Expand these expressions containing the Bernoulli polynomials:
expand(bernoulli(n, x + 3))
ans = bernoulli(n, x) + (n*(x + 1)^n)/(x + 1) +... (n*(x + 2)^n)/(x + 2) + (n*x^n)/x
expand(bernoulli(n, 3*x))
ans = (3^n*bernoulli(n, x))/3 + (3^n*bernoulli(n, x + 1/3))/3 +... (3^n*bernoulli(n, x + 2/3))/3
Input Arguments
More About
Version History
Introduced in R2014a