factor
Factorization
Description
uses additional options specified by one or more F
= factor(___,Name,Value
)Name,Value
pair
arguments. This syntax can use any of the input arguments from the previous syntaxes.
Examples
Factor Integer Numbers
F = factor(823429252)
F = 2 2 59 283 12329
To factor integers greater than flintmax
, convert the integer to a
symbolic object using sym
. Then place the number in quotation marks to
represent it accurately.
F = factor(sym('82342925225632328'))
F = [ 2, 2, 2, 251, 401, 18311, 5584781]
To factor a negative integer, convert it to a symbolic object using
sym
.
F = factor(sym(-92465))
F = [ -1, 5, 18493]
Perform Prime Factorization of Large Numbers
Perform prime factorization for
41758540882408627201
. Since the integer is greater than
flintmax
, convert it to a symbolic object using
sym
, and place the number in quotation marks to represent it
accurately.
n = sym('41758540882408627201'); factor(n)
ans = [ 479001599, 87178291199]
Factor Symbolic Fractions
Factor the fraction 112/81
by converting it into a
symbolic object using sym
.
F = factor(sym(112/81))
F = [ 2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]
Factor Polynomials
Factor the polynomial x^6-1
.
syms x
F = factor(x^6-1)
F = [ x - 1, x + 1, x^2 + x + 1, x^2 - x + 1]
Factor the polynomial y^6-x^6
.
syms y
F = factor(y^6-x^6)
F = [ -1, x - y, x + y, x^2 + x*y + y^2, x^2 - x*y + y^2]
Separate Factors Containing Specified Variables
Factor y^2*x^2
for factors containing
x
.
syms x y F = factor(y^2*x^2,x)
F = [ y^2, x, x]
factor
combines all factors without x
into the
first element. The remaining elements of F
contain irreducible factors
that contain x
.
Factor the polynomial y
for factors containing symbolic variables
b
and c
.
syms a b c d y = -a*b^5*c*d*(a^2 - 1)*(a*d - b*c); F = factor(y,[b c])
F = [ -a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]
factor
combines all factors without b
or
c
into the first element of F
. The remaining
elements of F
contain irreducible factors of y
that
contain either b
or c
.
Choose Factorization Modes
Use the FactorMode
argument to choose a particular
factorization mode.
Factor an expression without specifying the factorization mode. By default,
factor
uses factorization over rational numbers. In this mode,
factor
keeps rational numbers in their exact symbolic form.
syms x factor(x^3 + 2, x)
ans = x^3 + 2
Factor the same expression, but this time use numeric factorization over real numbers. This mode factors the expression into linear and quadratic irreducible polynomials with real coefficients and converts all numeric values to floating-point numbers.
factor(x^3 + 2, x, 'FactorMode', 'real')
ans = [ x + 1.2599210498948731647672106072782,... x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]
Factor this expression using factorization over complex numbers. In this mode,
factor
reduces quadratic polynomials to linear expressions with
complex coefficients. This mode converts all numeric values to floating-point
numbers.
factor(x^3 + 2, x, 'FactorMode', 'complex')
ans = [ x + 1.2599210498948731647672106072782,... x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i,... x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i]
Factor this expression using the full factorization mode. This mode factors the expression into linear expressions, reducing quadratic polynomials to linear expressions with complex coefficients. This mode keeps rational numbers in their exact symbolic form.
factor(x^3 + 2, x, 'FactorMode', 'full')
ans = [ x + 2^(1/3),... x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2),... x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2)]
Approximate the result with floating-point numbers by using vpa
.
Because the expression does not contain any symbolic parameters besides the variable
x
, the result is the same as in complex factorization mode.
vpa(ans)
ans = [ x + 1.2599210498948731647672106072782,... x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i,... x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i]
Approximate Results Containing RootOf
In the full factorization mode,factor
also can
return results as a symbolic sums over polynomial roots expressed as
RootOf
.
Factor this expression.
syms x s = factor(x^3 + x - 3, x, 'FactorMode','full')
s = [ x - root(z^3 + z - 3, z, 1),... x - root(z^3 + z - 3, z, 2),... x - root(z^3 + z - 3, z, 3)]
Approximate the result with floating-point numbers by using
vpa
.
vpa(s)
ans = [ x - 1.2134116627622296341321313773815,... x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i,... x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i]
Input Arguments
Output Arguments
Tips
To factor an integer greater than
flintmax
, wrap the integer withsym
. Then place the integer in quotation marks to represent it accurately, for example,sym('465971235659856452')
.To factor a negative integer, wrap the integer with
sym
, for example,sym(-3)
.
Version History
Introduced before R2006a