harmonic
Harmonic function (harmonic number)
Syntax
Description
harmonic(
returns the harmonic function of
x
)x
. For integer values of x
,
harmonic(x)
generates harmonic numbers.
Examples
Generate Harmonic Numbers
Generate the first 10 harmonic numbers.
harmonic(sym(1:10))
ans = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520]
Harmonic Function for Numeric and Symbolic Arguments
Find the harmonic function for these numbers. Since these are not symbolic objects, you get floating-point results.
harmonic([2 i 13/3])
ans = 1.5000 + 0.0000i 0.6719 + 1.0767i 2.1545 + 0.0000i
Find the harmonic function symbolically by converting the numbers to symbolic objects.
y = harmonic(sym([2 i 13/3]))
y = [ 3/2, harmonic(1i), 8571/1820 - (pi*3^(1/2))/6 - (3*log(3))/2]
If the denominator of x
is 2, 3, 4, or 6, and |x| < 500, then the result is expressed in terms of pi
and log
.
Use vpa
to approximate the results obtained.
vpa(y)
ans = [ 1.5, 0.67186598552400983787839057280431... + 1.07667404746858117413405079475i,... 2.1545225442213858782694336751358]
For |x| > 1000, harmonic
returns the function call as it is. Use vpa
to force harmonic
to evaluate the function call.
harmonic(sym(1001)) vpa(harmonic(sym(1001)))
ans = harmonic(1001) ans = 7.4864698615493459116575172053329
Harmonic Function for Special Values
Find the harmonic function for special values.
harmonic([0 1 -1 Inf -Inf])
ans = 0 1 Inf Inf NaN
Harmonic Function for Symbolic Functions
Find the harmonic function for the symbolic function
f
.
syms f(x) f(x) = exp(x) + tan(x); y = harmonic(f)
y(x) = harmonic(exp(x) + tan(x))
Harmonic Function for Symbolic Vectors and Matrices
Find the harmonic function for elements of vector V
and matrix M
.
syms x V = [x sin(x) 3*i]; M = [exp(i*x) 2; -6 Inf]; harmonic(V) harmonic(M)
ans = [ harmonic(x), harmonic(sin(x)), harmonic(3i)] ans = [ harmonic(exp(x*1i)), 3/2] [ Inf, Inf]
Plot Harmonic Function
Plot the harmonic function from x
= -5 to x
= 5.
syms x fplot(harmonic(x),[-5 5]) grid on
Differentiate and Find Limit of Harmonic Function
The functions diff
and limit
handle
expressions containing harmonic
.
Find the second derivative of harmonic(x^2+1)
.
syms x diff(harmonic(x^2+1),x,2)
ans = 2*psi(1, x^2 + 2) + 4*x^2*psi(2, x^2 + 2)
Find the limit of harmonic(x)
as x
tends to ∞
and of (x+1)*harmonic(x)
as x
tends to -1.
syms x limit(harmonic(x),Inf) limit((x+1)*harmonic(x),-1)
ans = Inf ans = -1
Taylor Series Expansion of Harmonic Function
Use taylor
to expand the harmonic function in terms of
the Taylor series.
syms x taylor(harmonic(x))
ans = (pi^6*x^5)/945 - zeta(5)*x^4 + (pi^4*x^3)/90... - zeta(3)*x^2 + (pi^2*x)/6
Expand Harmonic Function
Use expand
to expand the harmonic function.
syms x expand(harmonic(2*x+3))
ans = harmonic(x + 1/2)/2 + log(2) + harmonic(x)/2 - 1/(2*(x + 1/2))... + 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x + 3)
Input Arguments
More About
Algorithms
The harmonic function is defined for all complex arguments z except for negative integers -1, -2,... where a singularity occurs.
If x
has denominator 1, 2, 3, 4, or 6, then an explicit result is
computed and returned. For other rational numbers, harmonic
uses the
functional equation to obtain a result with an argument x from the interval [0,
1].
expand
expands harmonic
using the equations , , and the Gauss multiplication formula for harmonic(kx)
,
where k is an integer.
harmonic
implements the following explicit formulae:
Version History
Introduced in R2014a