Pattern Recognition with Perceptron
7 次查看(过去 30 天)
显示 更早的评论
Hi, all
I have six patterns as shown below
A1 = [ -1 -1 1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1;
1 1 1 -1 1 1 1];
B1 = [ 1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1];
C1 = [ -1 -1 1 1 1 1 1 ;
-1 1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
-1 1 -1 -1 -1 -1 1;
-1 -1 1 1 1 1 -1];
A2 = [ -1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1];
B2 = [ 1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1];
C2 = [ -1 -1 1 1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 1;
-1 1 -1 -1 -1 1 -1;
-1 -1 1 1 1 -1 -1];
I have to recognize these patterns with artificial neural network.
I am new in Matlab. Please help!
I need to divide this data into 2 groups.
The first group A1, B1, C1 as training data. The second group A2, B2, C2 used to validate/test the network.
Example : if I select A1 then the output must display 'A', if I select B1 then the output must display 'B', if I select A2 then the output must display 'A'.
. . # # . . .
. . . # . . .
. . . # . . .
. . # . # . .
. . # . # . . => This pattern should be recognized as A
. # # # # # .
. # . . . # .
. # . . . # .
# # # . # # #
In result program, we must explain how to get that. it mean we must explain epochs from start to finish. And Learning Rate = 1 And Threshold Value = 0.5
How do I do that?
Thanks in advance!
Network type is perceptron
2 个评论
Greg Heath
2013-11-13
Hmm, I submitted an answer to this. Must have made a mistake. Sorry, cannot get back to it until later.
Bottom line was you need a huge amount of input variable reduction.
Greg
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!