Solving a System of Equations

2 次查看(过去 30 天)
I am experiencing difficulties in solving the following system of equations: Υ=Χ+Α-Β*e^(-Χ/6), Υ= -10log[10^(1.76)-10^(-X/10)], where A and B are parameters defined by the user (i.e A=5, B=4). Any help could be useful. Thanks in advance!

采纳的回答

Walter Roberson
Walter Roberson 2013-11-11
You will need to solve this numerically. Subtract one from the other, numerically solve for a 0. Along the way you will need to decide if you are wanting natural logs or log10 .
Caution: this is pretty sensitive numerically, especially near X = -17.6
  2 个评论
Konstantinos
Konstantinos 2013-11-11
************************************************************************
clc;
clear all;
fprintf('This program solves the system of equations which have the following form:\nY=X+A-Be^(-X/6)\nY=-10*log[10^(1.76)-10^(-X/10)]\n')
syms OBO IBO
[IBO1,OBO1]=solve('OBO=IBO+6-6*exp(IBO/6)','10^(-IBO/10)+10^(-OBO/10)=10^1.76') ********************************************************************** this peace of code works and gives me the necessary results because I set A=6 , B=6. The problem appears when I want the user to set A and B. To achieve this i use the following lines: ************************************************************************
clc;
clear all;
fprintf('This program solves the system of equations which have the following form:\nY=X+A-Be^(-X/6)\nY=-10*log[10^(1.76)-10^(-X/10)]\n')
syms OBO IBO
syms A B
A=input('Enter the value of the variable A: ');
B=input('Enter the value of the variable B: ');
[IBO1,OBO1]=solve('OBO=IBO+A-B*exp(IBO/6)','10^(-IBO/10)+10^(-OBO/10)=10^1.76') ***********************************************************************************
Walter Roberson
Walter Roberson 2013-11-11
eqn1 = sym('OBO=IBO+A-B*exp(IBO/6)');
eqn2 = sym('10^(-IBO/10)+10^(-OBO/10)=10^1.76');
sA = sym('A');
sB = sym('B');
seqn1 = subs(eqn1, {sA, sB}, {A, B});
seqn2 = subs(eqn2, {sA, sB}, {A, B});
solve(seqn1, seqn2)

请先登录,再进行评论。

更多回答(0 个)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by