Solving a Nonlinear Equation using Newton-Raphson Method

269 次查看(过去 30 天)
It's required to solve that equation: f(x) = x.^3 - 0.165*x.^2 + 3.993*10.^-4 using Newton-Raphson Method with initial guess (x0 = 0.05) to 3 iterations and also, plot that function.
Please help me with the code (i have MATLAB R2010a) ... I want the code to be with steps and iterations and if possible calculate the error also, please
  4 个评论
Rajesh
Rajesh 2022-12-10
to solve the given equation (x^2-1)/(x-1) taking minimum values for x and draw the stem graph and step graph

请先登录,再进行评论。

采纳的回答

Bruno Pop-Stefanov
Bruno Pop-Stefanov 2013-11-25
编辑:MathWorks Support Team 2022-9-27
The following code implements the Newton-Raphson method for your problem:
fun = @(x)x^3 - 0.165*x^2 + 3.993e-4;
x_true = fzero(fun,[0.01 0.1],optimset("Display","iter"));
Func-count x f(x) Procedure 2 0.1 -0.0002507 initial 3 0.0644397 -1.82743e-05 interpolation 4 0.0617709 5.41455e-06 interpolation 5 0.0623809 -2.96286e-08 interpolation 6 0.0623776 -4.33628e-11 interpolation 7 0.0623776 1.0842e-17 interpolation 8 0.0623776 0 interpolation Zero found in the interval [0.01, 0.1]
x = 0.1;
x_old = 100;
iter = 0;
while abs(x_old-x) > 1e-10 && iter <= 10 % x ~= 0
x_old = x;
x = x - (x^3 - 0.165*x^2 + 3.993e-4)/(3*x^2 - 0.33*x);
iter = iter + 1;
fprintf('Iteration %d: x=%.18f, err=%.18f\n', iter, x, x_true-x);
pause(1);
end
Iteration 1: x=0.016433333333333161, err=0.045944248180416342 Iteration 2: x=0.094298416648742320, err=-0.031920835134992817 Iteration 3: x=0.042655687778369436, err=0.019721893735380067 Iteration 4: x=0.063158887832661437, err=-0.000781306318911934 Iteration 5: x=0.062375951756182137, err=0.000001629757567366 Iteration 6: x=0.062377581507153931, err=0.000000000006595571 Iteration 7: x=0.062377581513749496, err=0.000000000000000007
You can plot the function with, for example:
x = linspace(0,0.1);
f = x.^3 - 0.165*x.^2 + 3.993*10^-4;
figure;
plot(x,f,'b',x,zeros(size(x)),'r--')
grid on
  6 个评论
Cesar Castro
Cesar Castro 2021-9-21
It did not work , May you help me, please? My F = x(1)^4+x(2)^4+2*x(1)^2*x(2)^2-4*x(1)+3 I Know the root is 1.
I do not know why, it did not work. Thanks in advance.

请先登录,再进行评论。

更多回答(3 个)

Dhruv Bhavsar
Dhruv Bhavsar 2020-8-28
  1. Solve the system of non-linear equations.
x^2 + y^2 = 2z
x^2 + z^2 =1/3
x^2 + y^2 + z^2 = 1
using Newton’s method having tolerance = 10^(−5) and maximum iterations upto 20
%Function NewtonRaphson_nl() is given below.
fn = @(v) [v(1)^2+v(2)^2-2*v(3) ; v(1)^2+v(3)^2-(1/3);v(1)^2+v(2)^2+v(3)^2-1];
jacob_fn = @(v) [2*v(1) 2*v(2) -2 ; 2*v(1) 0 2*v(3) ; 2*v(1) 2*v(2) 2*v(3)];
error = 10^-5 ;
v = [1 ;1 ;0.1] ;
no_itr = 20 ;
[point,no_itr,error_out]=NewtonRaphson_nl(v,fn,jacob_fn,no_itr,error)
NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error);
# OUTPUT.
Functions Below.
function [v1 , no_itr, norm1] = NewtonRaphson_nl(v,fn,jacob_fn,no_itr,error)
% nargin = no. of input arguments
if nargin <5 , no_itr = 20 ; end
if nargin <4 , error = 10^-5;no_itr = 20 ; end
if nargin <3 ,no_itr = 20;error = 10^-5; v = [1;1;1]; end
v1 = v;
fnv1 = feval(fn,v1);
i = 0;
while true
jacob_fnv1 = feval(jacob_fn,v1);
H = jacob_fnv1\fnv1;
v1 = v1 - H;
fnv1 = feval(fn,v1);
i = i + 1 ;
norm1 = norm(fnv1);
if i > no_itr && norm1 < error, break , end
%if norm(fnv1) < error , break , end
end
end
function [v1 , no_itr, norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error)
v1 = v;
fnv1 = feval(fn,v1);
i = 0;
fprintf(' Iteration| x | y | z | Error | \n')
while true
norm1 = norm(fnv1);
fprintf('%10d |%10.4f| %10.4f | %10.4f| %10.4d |\n',i,v1(1),v1(2),v1(3),norm1)
jacob_fnv1 = feval(jacob_fn,v1);
H = jacob_fnv1\fnv1;
v1 = v1 - H;
fnv1 = feval(fn,v1);
i = i + 1 ;
norm1 = norm(fnv1);
if i > no_itr && norm1 < error, break , end
%if norm(fnv1) < error , break , end
end
end
This covers answer to your question and also queries for some comments I read in this thread.
  4 个评论
Munish Jindal
Munish Jindal 2023-2-13
编辑:Munish Jindal 2023-2-13
Got this error.
unrecognized function or variable 'NewtonRaphson_nl_print'.
Walter Roberson
Walter Roberson 2023-2-13
the code is given above starting at the line
function [v1 , no_itr, norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error)

请先登录,再进行评论。


Pourya Alinezhad
Pourya Alinezhad 2013-11-25
you can use the following line of code;
x = fzero(@(x)x.^3 - 0.165*x.^2 + 3.993*10.^-4,0.05)

Mohamed Hakim
Mohamed Hakim 2021-5-21
编辑:Walter Roberson 2022-2-12
function NewtonRaphsonMethod
%Implmentaton of Newton-Raphson method to determine a solution.
%to approximate solution to x = cos(x), we let f(x) = x - cos(x)
i = 1;
p0 = 0.5*pi; %initial conditions
N = 100; %maximum number of iterations
error = 0.0001; %precision required
syms 'x'
f(x) = x - cos(x); %function we are solving
df = diff(f); %differential of f(x)
while i <= N
p = p0 - (f(p0)/df(p0)); %Newton-Raphson method
if (abs(p - p0)/abs(p)) < error %stopping criterion when difference between iterations is below tolerance
fprintf('Solution is %f \n', double(p))
return
end
i = i + 1;
p0 = p; %update p0
end
fprintf('Solution did not coverge within %d iterations at a required precision of %d \n', N, error) %error for non-convergence within N iterations
end

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by