solving transcendental equation numerically
21 次查看(过去 30 天)
显示 更早的评论
I am trying to solve the 2 transcendental equations for 2 variables A,M for the given L
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A^3 - L*A^2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L*A^2/2*(sqrt(M^2-1) + (M^2-2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2-1)*acos(1/M)-M+1)-1;
can any one help me how to solve it numerically
0 个评论
回答(2 个)
Mischa Kim
2014-1-16
编辑:Mischa Kim
2014-1-16
Hello vijay, what are the equations equal to? Zero? In other words,
0 = A^3 - L*A^2.*(sqrt(M.^2 - 1) + M.^2.*acos(1./M)) - PBAR;
0 = L*A^2/2*(sqrt(M^2 - 1) + (M^2 - 2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2 - 1)*acos(1/M) - M+1)-1;
If so, this is a root-finding problem: find A and M such that the two equations are satisfied. There is plenty of literature on solving systems of non-linear equations.
Try Newton-Raphson. The challenge you might run into is to find good starting values for the search, such that the algorithm coverges properly. Also be aware that there could be multiple soulutions to your problem.
0 个评论
Azzi Abdelmalek
2014-1-16
M=sym('M',[1,5])
A=sym('A',[1 5])
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A.^3 - L.*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L.*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L.^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
solve([equation1;equation2])
4 个评论
Azzi Abdelmalek
2014-1-16
syms A M
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
for k=1:numel(L)
equation1 = A.^3 - L(k).*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L(k).*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L(k).^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
sol=solve([equation1;equation2]);
M1(k,1)=sol.M
A1(k,1)=sol.A
end
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!