image compression using FFT
18 次查看(过去 30 天)
显示 更早的评论
Sir how can we compress image using FFT transform..RLE coding is not suitable with the FFT..what coding technique is suitable for FFT to compress the image..
0 个评论
回答(2 个)
Walter Roberson
2014-4-3
RLE is a lossless compression technique. Compression with FFT is a lossy compression technique. You do the FFT, and you throw away some of the coefficients and output the rest; then for reconstruction you let the missing coefficients be 0 and do the inverse FFT.
Which coefficients you should throw away is something for you to explore.
0 个评论
sam k
2020-6-6
a=imread('link.jpeg');
grayIm =rgb2gray(a);
[row col] = size(grayIm);
subplot(2, 2, 1);
imshow(grayIm);
title('original image')
A=fft2(grayIm); %2D fft
count_pic=2;
for thresh=0.1*[0.001 0.005 0.006]*max(max(abs(A)))
ind=abs(A)>thresh;
count=row*col-sum(sum(ind));
Alow=A.*ind;
per=100-count/(row*col)*100;
Blow=uint8(ifft2(Alow));
subplot(2,2,count_pic);
imshow(Blow);
count_pic=count_pic+1;
title([num2str(per) '% of fft basis'])
end
2 个评论
Sulaymon Eshkabilov
2023-11-15
This means what % of the highest FFT coeffcients to keep.
It can be also applied for color (RGB) images as well:
A = imread('A1.jpeg');
Afft=fft2(A);
Asort = sort(abs(Afft(:)));
counter=0;
for Keep = [.95 .1 .05 .001]
threshold = Asort(floor((1-Keep)*length(Asort)));
Ind = abs(Afft)>threshold;
Atlow = Afft.*Ind;
Alow = uint8(ifft2(Atlow));
s = whos('Alow');
totSize = s.bytes;
counter=counter+1;
figure(counter)
imshow(Alow)
saveas(gcf, strcat(['FFT_IMG', num2str(counter) '.jpeg']))
s = dir(strcat(['FFT_IMG', num2str(counter) '.jpeg']));
filesize(counter)=s.bytes
title([num2str(Keep) '% of fft basis is kept and updated image file size is: ' num2str(s.bytes)])
end
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Denoising and Compression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!