Parameter estimation nlinfit vs. fitnlm

11 次查看(过去 30 天)
Hi
I want to fit a nonlinear model using nonlinear regression function nlinfit or fitnlm.Is there a difference? which one is more robust for a difficult kinetic model?
It seems both use Levenberg-Marquardt algorithm ?
Thank You,

采纳的回答

Star Strider
Star Strider 2014-5-26
There is no real difference. Both nlinfit and fitnlm are Statistics Toolbox functions for nonlinear regression, and so use the same fundamental functions. The fitnlm function is a shell around nlinfit and its friends. The advantage to fitnlm is that it’s slightly easier to use, and delivers a few more statistics. The important results — parameter confidence intervals and confidence intervals on the fitted equation — are easy to get with either, but actually slightly easier with nlinfit, nlparci and nlpredci.
Experiment with both, and see which is most appropriate to your application.
Don’t neglect lsqcurvefit if you have access to it (Optimization Toolbox). It can do two things that the Statistics Toolbox functions cannot: (1) accept bounds on the parameters, and (2) fit matrix dependent variables. It doesn’t have access to all the statistics the Statistics Toolbox functions do, but it definitely has its uses.
  7 个评论
Ho Nam Ernest Yim
编辑:Ho Nam Ernest Yim 2018-4-3
Hi, can I know other than lsqcurvefit (same as lsqnonlin ?) and nlinfit. Are there any other suggestions on fitting a nonlinear data ? Mainly, I would like to compare how well different methods could do. Many Thanks

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Systems of Nonlinear Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by