eig versus svd functions?

28 次查看(过去 30 天)
Hi,
I would like to ask what is the difference between the function eig and svd and what is the difference between the right eigenvectors and the right singular eigenvectors of these functions?
Thank you

采纳的回答

Alfonso Nieto-Castanon
编辑:Alfonso Nieto-Castanon 2014-7-18
SVD is a decomposition for arbitrary-size matrices, while EIG applies only to square matrices. They are very much related:
The right singular vectors of A are the eigenvectors of A'*A, and the left singular vectors of A are the eigenvectors of A*A'.
Similarly the singular values of A are the square root of the eigenvalues of A*A' (or A'*A, the eigenvalues of those are just the same)
  2 个评论
Traian Preda
Traian Preda 2014-7-18
Hi,
Thank you very much for the answer. So by using eig to a non-square matrix the eigenvectors I get it are wrong? Should I use the svd function to get the correct eigenvectors?
Alfonso Nieto-Castanon
not exactly, there are simply no "eigenvectors" of a non-square matrix (eigenvalues/eigenvectors are only defined for square matrices)

请先登录,再进行评论。

更多回答(2 个)

Traian Preda
Traian Preda 2014-7-18
Hi again,
For example for this A matrix (square) I get using eig different right eigenvectors than by using svd. Seems that the sign of the ones produces by svd are the correct ones. Why this is happen?
-0,309435400000000 0,0211961600000000 0,0136410800000000 0,00743749000000000 0,00982272000000000 0,0111470200000000 0,00231817000000000 0,00864246000000000 0,00882075000000000 0,00284796000000000 0,00218905000000000 0,000430500000000000 0,000376470000000000 -0,113049800000000 0,00313088000000000 0,00149085000000000 0,00262337000000000 0,00311209000000000 -0,000262570000000000 0,00274903000000000 0,00264655000000000 0,000447630000000000 -0,000306180000000000 -0,00343315000000000 0,0103301100000000 0,0146587200000000 -0,324318800000000 0,00848285000000000 0,0167109100000000 0,0201004200000000 -0,00347676000000000 0,00632566000000000 0,00637912000000000 0,00186275000000000 0,00111713000000000 -0,00141243000000000 0,0464070100000000 0,0700929900000000 0,0900204400000000 -1,25637600000000 0,0836402500000000 0,103855100000000 -0,0114356300000000 0,0277253900000000 0,0280522900000000 0,00843094000000000 0,00547936000000000 -0,00411460000000000 0,0343002800000000 0,0606666900000000 0,0772628000000000 0,0388068100000000 -0,983633200000000 0,101284700000000 0,000288840000000000 0,0190463800000000 0,0194692000000000 0,00636249000000000 0,00501263000000000 0,00161963000000000 0,0216479800000000 0,0390856900000000 0,0497280000000000 0,0259531400000000 0,0538816600000000 -0,620819600000000 0,000968680000000000 0,0118906800000000 0,0121738400000000 0,00402735000000000 0,00325024000000000 0,00144150000000000 0,0560331100000000 0,0322143500000000 0,0452270700000000 0,00474108000000000 0,0665512800000000 0,0879651100000000 -1,14406400000000 0,0420314600000000 0,0413540800000000 0,00940455000000000 0,000919950000000000 -0,0325435900000000 0,0651720900000000 0,148360900000000 0,0550088600000000 0,0311400300000000 0,0376528500000000 0,0420123000000000 0,0135666400000000 -1,51919300000000 0,0778850700000000 -0,0322261000000000 0,0138896200000000 0,0193712200000000 0,0669056200000000 0,140490500000000 0,0573799400000000 0,0320810700000000 0,0399603600000000 0,0448506100000000 0,0126767400000000 0,0401568300000000 -1,54203000000000 -0,119447500000000 -0,000335680000000000 0,00939138000000000 0,0818470500000000 0,154808700000000 0,0715045300000000 0,0394081700000000 0,0507693800000000 0,0573505200000000 0,0137023800000000 -0,0385798100000000 -0,184705900000000 -1,07855600000000 -0,0214767400000000 -0,00365997000000000 0,0835618100000000 0,118544600000000 0,0760379600000000 0,0406107300000000 0,0561993500000000 0,0643053400000000 0,00980772000000000 0,0875483300000000 0,0746029100000000 -0,0136161900000000 -1,29450700000000 -0,0388254600000000 0,00108525000000000 0,000792020000000000 0,00104497000000000 0,000534560000000000 0,000812510000000000 0,000944030000000000 4,82500000000000e-05 0,000902380000000000 0,000866900000000000 0,000141640000000000 -0,000112090000000000 -0,174199600000000
  1 个评论
Alfonso Nieto-Castanon
the eigenvectors of a square matrix are not generally the same as any of the singular vectors of that same matrix (they are equal/equivalent only when the matrix is symmetric)

请先登录,再进行评论。


Traian Preda
Traian Preda 2014-7-18
OK, then this can be reason that when I try to rebuilt the A matrix, I cannot succeed by using the V, D eigenvectors ([V,D]=eig(A)), but I can rebuilt it when I use V,S,D ([V,S,D]=svd(A))?
Thank you very much
  1 个评论
Alfonso Nieto-Castanon
编辑:Alfonso Nieto-Castanon 2014-7-18
You can reconstruct A from its eigenvectors only if A is normal (A'*A==A*A'). You can reconstruct A from its singular vectors for any matrix A.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by