exponential curve fit coefficients

7 次查看(过去 30 天)
Is there a way to calculate exponential curve fit coefficients without using the curvefit toolbox??

回答(2 个)

Star Strider
Star Strider 2021-9-8
编辑:Star Strider 2021-9-8
Linearising it by log-transforming the data is not appropriate, because that distorts the errors, making them multiplicative rather than additive.
It is straightforward to do a nonlinear parameter estimation using fminsearch, which is a core-MATLAB function, requiring no toolboxes.
EDIT — (8 Sep 2021 at 15:30)
To illustrate —
x = linspace(0, 5, 25);
y = x.^2 + randn(size(x));
y = abs(y);
objfcn = @(b,x) b(1).*exp(b(2).*x); % Objective Function
B0 = rand(3,1);
[B1,Fval] = fminsearch(@(b) norm(y - objfcn(b,x)), B0) % Nonlinear Iterative Solution
B1 = 3×1
1.4102 0.5850 -1.0206
Fval = 7.3191
Fit1 = objfcn(B1,x);
B2 = polyfit(x, log(y), 1)
B2 = 1×2
0.9478 -0.9879
Fit2 = polyval(B2, x);
Fit2 = exp(Fit2);
figure
subplot(2,1,1)
plot(x, y, '.b')
hold on
plot(x, Fit1, '-r')
hold off
grid
title('Nonlinear Fit')
subplot(2,1,2)
plot(x, y, '.b')
hold on
plot(x, Fit2, '-r')
hold off
grid
title('Linearised Fit')
.
  1 个评论
Ravi Narasimhan
Ravi Narasimhan 2021-9-8
Very interesting. I didn't know this was available in core Matlab. I thought (probably incorrectly) that the OP was looking for a quick and dirty solution where the linearization wasn't a big concern.

请先登录,再进行评论。


Ravi Narasimhan
Ravi Narasimhan 2021-9-8
编辑:Ravi Narasimhan 2021-9-8

类别

Help CenterFile Exchange 中查找有关 Interpolation 的更多信息

标签

产品


版本

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by