double integral infinite limits

16 次查看(过去 30 天)
is there any idea how can i calculate the integral of this function with infinite limits -00,+00
function Fr = int_frustration_function2(x,Kt,i)
Fr = dblquad(@(v,u)fun2(v,u,x,Kt,i),-Inf,Inf,-Inf,Inf);
end
where for fun2
function fun2 = fun2(v,u,x,Kt,i)
global SNR sigma_a q
k= 1./(sqrt(2.*pi.*((sigma_a./q).^(2))));
temp1=((log(v)+((sigma_a./q).^(2))).^(2)); temp2=(2.*((sigma_a./q).^(2))); temp3=exp(-temp1./temp2);
temp4=((B1N(Kt,0,u,i).*SNR.*x)./4);
fun2 = k.*exp(-(u.^2)).*(besseli(0,0).*exp(-temp4.*(v.^(2))).*temp3);%
end
please help!!!

采纳的回答

Mike Hosea
Mike Hosea 2011-8-26
This is easy to modify if you want c and/or d to be a function handle, like for QUAD2D. Also, it should be easy to add tolerances or whatever options you would like.
function y = mydblquad(fun,a,b,c,d)
% Double integral using QUADGK.
innerintegral = @(x)arrayfun( ...
@(xi,y1i,y2i)quadgk(@(y)fun(xi*ones(size(y)),y),y1i,y2i), ...
x,c*ones(size(x)),d*ones(size(x)));
y = quadgk(innerintegral,a,b);
>> mydblquad(@(x,y)1./(1+x.^4+y.^4),-inf,inf,-inf,inf)
ans =
5.824747385361142
  6 个评论
Gautam
Gautam 2012-8-10
编辑:Gautam 2012-8-10
This was a very helpful post as I was wondering how I would achieve a double integration where the limits could be Inf. Following on Mike's post, I just wanted to confirm that the following modification to Mike's code to handle the case where the upper limit of the inner integral (the integration variable being y) is a function of x:
function y = mydblquad(fun,a,b,c,d) innerintegral = @(x) arrayfun(... @(xi,yli,y2i)quadgk(@(y)fun(xi*ones(size(y)),y),yli,y2i),... x,c*ones(size(x)),feval(d,x)); y = quadgk(innerintegral,a,b);
I tried the above and it seems to work fine. Any comments would be appreciated.
- Gautam
Mike Hosea
Mike Hosea 2012-8-10
One can indeed extend that method to use arbitrary lower and upper limit functions on the inner integral. I should note that the answer I gave above is somewhat old now. If you have the 2012a release of MATLAB you can use INTEGRAL2 "out of the box".

请先登录,再进行评论。

更多回答(1 个)

the cyclist
the cyclist 2011-8-25
There is some discussion here that may help you:
Be sure to look at the comments, too, particular the ones from Walter.

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by