How do I combine my function's output matrices into a single matrix?

3 次查看(过去 30 天)
function [] = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal = [Qx]
end
end
My function is working correctly as it gives the matrices I want, although I'd like to combine them into a single output matrix but am not sure how to. Any advice would be greatly appreciated!

采纳的回答

Dave B
Dave B 2021-9-12
编辑:Dave B 2021-9-12
Your function loops over some values and for each one computes a row vector.
To store the row vector in a matrix, specify an integer row. I've also adjusted your function to return the value:
q = integrateQuaternions;
size(q)
ans = 1×2
291 4
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
QFinal = nan(length(1:.1:30),4);
row = 1;
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(row,:) = Qx;
row = row + 1;
end
end
Note that a more common MATLAB approach looks more like
% timesteps = 1:.1:30;
% for i = 1:length(timesteps)
% t = timesteps(i);
% q0 = t .* ...
% ...
% Qfinal(i,:) = ...
% end

更多回答(1 个)

Walter Roberson
Walter Roberson 2021-9-12
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
ivals = 1:0.1:30; % for 30 second period with 0.1s timestep
num_i = length(ivals);
Qfinal = zeros(1, num_i);
for iidx = 1 : num_i % for 30 second period with 0.1s timestep
i = ivals(iidx);
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(iidx) = [Qx];
end
end

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

产品


版本

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by