Puzzler: Quickly tell if two absolute indices (a,b) are four connected for n x m matrix.
1 次查看(过去 30 天)
显示 更早的评论
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
Note, this code should use no toolboxes, and should be reasonably quick as this function will be called many times. Reasonably quick is up to debate as the rest of the code forms.
10 个评论
采纳的回答
David Young
2011-9-1
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
d = abs(a-b);
flag = d == n || (d == 1 && mod(min(a,b), n));
end
3 个评论
更多回答(5 个)
Fangjun Jiang
2011-9-1
Circle-shifting neighbors are considered connected.
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
[x,y]=ind2sub([n,m],[a;b]);
xdiff=abs(x(1)-x(2));
ydiff=abs(y(1)-y(2));
flag = ((xdiff==0) && (ydiff==1) || (ydiff==m-1)) || ...
((ydiff==0) && (xdiff==1) || (xdiff==n-1));
A little test script. All other entries so far didn't pass this test.
clc;
TestVector={6,7,4,5
6,10,4,5
1,4,4,5
1,17,4,5};
for k=1:size(TestVector,1)
if isFourConnected(TestVector{k,:})~=true
disp(k);beep;
end
end
Walter Roberson
2011-9-1
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
flag = abs(a-b)==n || (floor(a/n)==floor(b/n) && abs(a-b)==1);
3 个评论
Oleg Komarov
2011-9-1
I assume a,b,m,n always numeric and integer values > 1
function flag = isFourConnected(a,b,n,m)
% a,b : indices of interest a ~= b
% m,n : size of matrix of interest
% flag: True if indices a and b are four connected
% in a matrix of size n x m
d = a-b; flag = d == n || d == -n || (d == 1 && mod(a,n) ~= 1) || (d == -1 && mod(b,n) ~= 1);
4 个评论
Oleg Komarov
2011-9-1
Can't find any other valid solution to ensure bottom vs top not 4 conn except the ones already proposed.
Bruno Luong
2011-9-1
function flag = isFourConnected(a,b,n,m)
% 10 arithmetic operations by pair
c = max(a,b);
d = min(a,b);
e = c - d;
flag = (e==1 & mod(d,n)) | (e==n & c>n);
2 个评论
Walter Roberson
2011-9-1
This might or might not be slightly faster:
c = sort([a,b]);
e = c(2)-c(1);
flag = (e==1 & mod(c(1),n)) | (e==m & c(2)>n);
Or if you prefer your original structure, then instead of max/min, you could use
c = max(a,b);
d = a + b - c;
Bruno Luong
2011-9-1
I believe I had one redundant test in the earlier code:
function flag = isFourConnected(a,b,n,m)
% 8 arithmetic operations by pair
c = max(a,b);
d = min(a,b);
e = c - d;
flag = (e==1 & mod(d,n)) | (e==n);
Daniel Shub
2011-9-2
I am not sure what to do about circle-shifting neighbors so I have two answers.
function flag = isFourConnected(a,b,n,m)
%
% a,b: indices of interest a ~= b
% n,m: size of matrix of interest
%
% flag: True if indices a and b are four connected
% in a matrix of size n x m
%
%
% Your code here
% Using ind2sub might be faster.
col = mod([a(:), b(:)]-1, n)+1;
row = ceil([a(:), b(:)]/n);
%[col, row] = ind2sub([n, m], [a(:), b(:)]);
flag = reshape(mod(abs(diff(col, 1, 2)), n-2)+mod(abs(diff(row, 1, 2)), m-2) == 1, size(a));
% if circle shifted points are not connected:
% flag = reshape(abs(diff(col, 1, 2))+abs(diff(row, 1, 2)) == 1, size(a));
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Environment and Clutter 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!