Don't say which columns are of interest, but you'll have much more success if you use format string for the types of data by column and match the number of fields to the number of columns in the file...there are a number of empty columns at the right it appears, but ignoring them in the format string causes the extra blank lines you've gotten.
>> fmt=['%s %s %f %f %s' repmat('%f',1,18)];
>> fid=fopen('extrac1985.csv');
>> c=textscan(fid,fmt,'delimiter',',','headerlines',1,'collectoutput',1);
>> whos c
Name      Size            Bytes  Class    Attributes
c         1x4             18192  cell
>> fid=fclose(fid);
textscan puts the sets of text and numeric together so the first column cell array is the first two text columns then the numeric id, the text and finally the remaining numeric array.
To select columns in the end, either--
a) read whole as above and then just set unwanted columns to [], or
b) modify the format string and skip unwanted columns by use of the '%*s' or '%*f' as appropriate in the format string to not return unwanted columns.
for more detail; look at the link to 'format options' for the gory details.
ADDENDUM
OK, to skip some columns I had a few minutes...get rid of the last number of empty columns and a few that are identical thruout--
>> fmt=['%s %*s %f %f %*s' ...
        repmat('%*f',1,3) repmat('%f',1,10) repmat('%*f',1,5)];
>> c=textscan(fid,fmt,'delimiter',',','headerlines',1,'collectoutput',1);
>> whos c
Name      Size            Bytes  Class    Attributes
c         1x2              8600  cell               
>> c{1}(1:10)
ans = 
  '01/01/1985 0:00'
  '01/01/1985 1:00'
  '01/01/1985 2:00'
  '01/01/1985 3:00'
  '01/01/1985 4:00'
  '01/01/1985 5:00'
  '01/01/1985 6:00'
  '01/01/1985 7:00'
  '01/01/1985 8:00'
  '01/01/1985 9:00'
>> c{2}(1:10,:)
ans =
Columns 1 through 9
    892702     1   360    9   NaN    17    NaN    9     9
    892702     1   360    9   NaN    16    NaN    9     9
    892702     1   360    9   NaN    14    NaN    9     9
    892702     1   350    9   NaN    15    NaN    9     9
    892702     1   360   10   NaN    15    NaN    9     9
    892702     1   360   10   NaN    16    NaN    9     9
    892702     1    10    9   NaN    16    NaN    9     9
    892702     1   360   10   NaN    15    NaN    9     9
    892702     1   360    9   NaN    15    NaN    9     9
    892702     1   360    9   NaN    16    NaN    9     9
Columns 10 through 12
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
         0           9           0
>>