Find Q-criterion and Lambda2 from velocity values

50 次查看(过去 30 天)
Hello everyone, hope you are doing great.
I have a matlab code which reads a file that has x, y and z velocity values, as well as corresponding time for each value this is what it looks like:
clear all; clc
[file_list, path_n] = uigetfile('.txt', 'Multiselect', 'on');
filesSorted = natsortfiles(file_list);
if iscell(filesSorted) == 0;
filesSorted = (filesSorted);
end
for i = 1:length(filesSorted);
filename = filesSorted{i};
data = load([path_n filename]);
% Define x and y from the uploaded files
x = data (:,1);
y = data (:,2);
% Define Time for each value of the uploaded files
Time(i) = data (1,3);
Time_tp = Time';
end
Is there a way to get Lambda2 "λ" and Q-criterion values from the velocity data?
Thank you so much, stay safe

回答(1 个)

Martino Pinto
Martino Pinto 2024-1-5
编辑:Martino Pinto 2024-1-5
Hi! Here's a couple of functions that will do it:
function lambda2 = computeL2Criterion(u,v,w,grid_h)
% Computes the lambda2 criterion from the cartesian velocity
% field u,v,w and the grid spacing grid_h
[du_dx, du_dy, du_dz] = gradient(u,grid_h);
[dv_dx, dv_dy, dv_dz] = gradient(v,grid_h);
[dw_dx, dw_dy, dw_dz] = gradient(w,grid_h);
lambda2 = zeros(size(u));
for i = 1:size(u, 1)
for j = 1:size(u, 2)
for k = 1:size(u, 3)
% Calculate the symmetric and anti-symmetric parts of the velocity gradient tensor
S = [du_dx(i,j,k), (du_dy(i,j,k) + dv_dx(i,j,k)) / 2, (du_dz(i,j,k) + dw_dx(i,j,k)) / 2;
(dv_dx(i,j,k) + du_dy(i,j,k)) / 2, dv_dy(i,j,k), (dv_dz(i,j,k) + dw_dy(i,j,k)) / 2;
(dw_dx(i,j,k) + du_dz(i,j,k)) / 2, (dw_dy(i,j,k) + dv_dz(i,j,k)) / 2, dw_dz(i,j,k)];
Omega = [0, (du_dy(i,j,k) - dv_dx(i,j,k)) / 2, (du_dz(i,j,k) - dw_dx(i,j,k)) / 2;
(dv_dx(i,j,k) - du_dy(i,j,k)) / 2, 0, (dv_dz(i,j,k) - dw_dy(i,j,k)) / 2;
(dw_dx(i,j,k) - du_dz(i,j,k)) / 2, (dw_dy(i,j,k) - dv_dz(i,j,k)) / 2, 0];
M = S*S + Omega*Omega; % Combine deformation and rotation
eigenvalues = eig(M);
eigenvalues = sort(eigenvalues, 'descend');
lambda2(i,j,k) = eigenvalues(2);
end
end
end
end
function Q = computeQCriterion(U, V, W, grid_h)
% Computes the lambda2 criterion from the cartesian velocity
% field u,v,w and the grid spacing grid_h
[dxU, dyU, dzU] = gradient(U, grid_h);
[dxV, dyV, dzV] = gradient(V, grid_h);
[dxW, dyW, dzW] = gradient(W, grid_h);
S_xx = dxU;
S_yy = dyV;
S_zz = dzW;
S_xy = 0.5 * (dyU + dxV);
S_xz = 0.5 * (dzU + dxW);
S_yz = 0.5 * (dzV + dyW);
Omega_xy = 0.5 * (dyU - dxV);
Omega_xz = 0.5 * (dzU - dxW);
Omega_yz = 0.5 * (dzV - dyW);
Q = 0.5 * ((Omega_xy.^2 + Omega_xz.^2 + Omega_yz.^2) - ...
(S_xx.^2 + S_yy.^2 + S_zz.^2 + 2*(S_xy.^2 + S_xz.^2 + S_yz.^2)));
end
  2 个评论
William Thielicke
William Thielicke 2024-2-15
How would computeQCriterion look like if the data is only 2-dimensional (U and V)?
Nick Battista
Nick Battista 2024-5-14
编辑:Nick Battista 2024-5-15
I believe Q-Criterion in two-dimensions would look like the following (PS- thanks for PIVlab; love it!)
function Qcrit = give_Me_Q_Criterion(U,V,dx,dy)
% U: horizontal component of velocity field (matrix)
% V: vertical component of velocity field (matrix)
% dx,dy: grid spacing
% Function that computes partial derivative of U with respect to x
dudx = D(U,dx,'x'); 
% Function that computes partial derivative of V with respect to x
dvdx = D(V,dx,'x');
% Function that computes partial derivative of U with respect to y
dudy = D(U,dy,'y');
% Function that computes partial derivative of V with respect to y
dvdy = D(V,dy,'y');
%-------------------------------------------------------
% Q Criterion (2d) = -Uy.*Vx - 0.5*Ux.^2 -0.5*Vy.^2
%-------------------------------------------------------
Qcrit = -dudy.*dvdx - 0.5*dudx.^2 - 0.5*dvdy.^2;

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Asynchronous Parallel Programming 的更多信息

产品


版本

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by